Skip to main content
Log in

Pygmy dipole resonance in stable nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution (γ, γ′) experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a non-relativistic mean-field description, predicting significantly different properties of the PDR. The second part presents a novel approach to measure the complete electric dipole strength distribution from excitation energies starting at about 5 MeV across the giant dipole resonance (GDR) with high-resolution inelastic proton scattering under 0° at energies of a few 100 MeV/nucleon. The case of 208Pb is discussed in detail and first result from a recent experiment on 120Sn is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Hartmann, J Enders, P Mohr, K Vogt, S Volz and A Zilges, Phys. Rev. Lett. 85, 274 (2000); Erratum 86, 4981 (2001)

    Article  ADS  Google Scholar 

  2. R Schwengner et al, Phys. Rev. C76, 034321 (2007)

    ADS  Google Scholar 

  3. S Volz et al, Nucl. Phys. A779, 1 (2006)

    ADS  Google Scholar 

  4. D Savran et al, Phys. Rev. Lett. 100, 232501 (2008)

    Article  ADS  Google Scholar 

  5. N Ryezayeva et al, Phys. Rev. Lett. 89, 272502 (2002)

    Article  ADS  Google Scholar 

  6. B Özel, Study of the 112,120 Sn(γ, γ′) reactions and systematics of the pygmy dipole resonance at the Z = 50 shell closure, Ph.D. thesis (Cukurova University, 2008)

  7. K Govaert et al, Phys. Rev. C57, 2229 (1998)

    ADS  Google Scholar 

  8. P Adrich et al, Phys. Rev. Lett. 95, 132501 (2005)

    Article  ADS  Google Scholar 

  9. A Klimkiewicz et al, Phys. Rev. C76, 051603(R) (2007)

    ADS  Google Scholar 

  10. D Sarchi, P F Bortignon and G Colò, Phys. Lett. B601, 27 (2004)

    ADS  Google Scholar 

  11. N Tsoneva, H Lenske and Ch Stoyanov, Nucl. Phys. A731, 273 (2004)

    ADS  Google Scholar 

  12. D Vretenar, T Nikšić, N Paar and P Ring, Nucl. Phys. A731, 281 (2004)

    ADS  Google Scholar 

  13. N Paar, T Nikšić, D Vretenar and P Ring, Phys. Lett. B606, 288 (2005)

    ADS  Google Scholar 

  14. S P Kamerdzhiev, Phys. At. Nucl. 69, 1110 (2006)

    Article  Google Scholar 

  15. J Piekarewicz, Phys. Rev. C73, 044325 (2006)

    ADS  Google Scholar 

  16. J Terasaki and J Engel, Phys. Rev. C74, 044301 (2006)

    ADS  Google Scholar 

  17. N Tsoneva and H Lenske, Phys. Rev. C77, 024321 (2008)

    ADS  Google Scholar 

  18. E G Lanza, F Catara, D Gambacurta, M V Andres and Ph Chomaz, Phys. Rev. C79, 054615 (2009)

    ADS  Google Scholar 

  19. G Co’, V De Donno, C Maieron, M Anguiano and A M Lallena, Phys. Rev. C80, 014308 (2009); Publishers Note C80, 019910 (2009)

    ADS  Google Scholar 

  20. A Tamii et al, Nucl. Instrum. Methods Phys. Res. A605, 326 (2009)

    ADS  Google Scholar 

  21. B L Berman and S C Fultz, Rev. Mod. Phys. 47, 713 (1975)

    Article  ADS  Google Scholar 

  22. P Mohr et al, Nucl. Instrum. Methods Phys. Res. A423, 480 (1999)

    ADS  Google Scholar 

  23. U Kneissl, N Pietralla and A Zilges, J. Phys. G32, R217 (2006)

    ADS  Google Scholar 

  24. J Enders et al, Nucl. Phys. A741, 3 (2004)

    ADS  Google Scholar 

  25. P G Hansen, B Jonson and A Richter, Nucl. Phys. A518, 13 (1990)

    ADS  Google Scholar 

  26. J Enders, N Huxel, P von Neumann-Cosel and A Richter, Phys. Rev. Lett. 79, 2010 (1997)

    Article  ADS  Google Scholar 

  27. N Huxel et al, Nucl. Phys. A645, 239 (1999)

    ADS  Google Scholar 

  28. T Rauscher, F-K Thielemann and K-L Kratz, Phys. Rev. C56, 1613 (1997)

    ADS  Google Scholar 

  29. T von Egidy and D Bucurescu, Phys. Rev. C72, 044311 (2005); Erratum C73, 049901 (2006)

    ADS  Google Scholar 

  30. P Demetriou and S Goriely, Nucl. Phys. A695, 95 (2001)

    ADS  Google Scholar 

  31. B Özel-Tashenov et al, Phys. Lett. B (submitted).

  32. A Shevchenko et al, Phys. Rev. Lett. 93, 122501 (2004)

    Article  ADS  Google Scholar 

  33. Y Kalmykov et al, Phys. Rev. Lett. 96, 012502 (2006)

    Article  ADS  Google Scholar 

  34. C A Bertulani and G Baur, Phys. Rep. 163, 299 (1988)

    Article  ADS  Google Scholar 

  35. A Tamii et al, Phys. Lett. B459, 61 (1999)

    ADS  Google Scholar 

  36. T Baker et al, Phys. Rep. 289, 235 (1997)

    Article  ADS  Google Scholar 

  37. J Raynal, program DWBA07

  38. M A Franey and W G Love, Phys. Rev. C31, 488 (1985)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. von Neumann-Cosel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Neumann-Cosel, P. Pygmy dipole resonance in stable nuclei. Pramana - J Phys 75, 63–71 (2010). https://doi.org/10.1007/s12043-010-0065-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0065-0

Keywords

Navigation