Skip to main content
Log in

Gamma and electron spectroscopy of transfermium isotopes at Dubna: Results and plans

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Detailed spectroscopic information of excited nuclear states in deformed transfermium nuclei is scarce. Most of the information available today has been obtained from investigations of fine-structure α-decay. Although α decay gives access to hindrance factors and lifetimes which are strongly correlated to shell/subshell closures and the presence of isomers, only the combined use of γ and conversion electron spectroscopy allows the precise determination of excitation energy, spin and parity of nuclear levels.

In the years 2004–2009 using the GABRIELA set-up [Hauschild et al, Nucl. Instrum. Methods A560, 388 (2006)] at the focal plane of VASSILISSA separator [Malyshev et al, Nucl. Instrum. Methods A440, 86 (2000); A516, 529 (2004)] experiments with the aim of γ and electron spectroscopy of the isotopes from Fm to Lr, formed by complete fusion reactions with accelerated heavy ions were performed. In the following, the preliminary results of decay studies using α-γ and α-β coincidences at the focal plane of the VASSILISSA recoil separator are presented.

Accumulated experience allowed us to perform ion optical calculations and to design the new experimental set-up, which will collect the base and best parameters of the existing separators and complex detector systems used at the focal planes of these installations. In the near future it is planned to study neutron-rich isotopes of the Rf-Sg in the ‘hot’ fusion reactions with 22Ne incident projectiles and 242Pu, 243Am and 248Cm targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z Patyk and A Sobiczewski, Nucl. Phys. A533, 132 (1991)

    ADS  Google Scholar 

  2. S Cwiok et al, Nucl. Phys. A611, 211 (1996)

    ADS  Google Scholar 

  3. M Bender et al, Phys. Rev. C60, 034304 (1999)

    ADS  Google Scholar 

  4. A T Kruppa et al, Phys. Rev. C61, 034313 (2000)

    ADS  Google Scholar 

  5. P Reiter et al, Phys. Rev. Lett. 82, 509 (1999)

    Article  ADS  Google Scholar 

  6. M Leino et al, Eur. Phys. J. A6, 63 (1999)

    ADS  Google Scholar 

  7. P A Butler et al, Phys. Rev. Lett. 89, 202501 (2002)

    Article  ADS  Google Scholar 

  8. R D Humphreys et al, Phys. Rev. C69 064324 (2004)

    ADS  Google Scholar 

  9. P Reiter et al, Phys. Rev. Lett. 95 032501 (2005)

    Article  ADS  Google Scholar 

  10. R-D Herzberg et al, Phys. Rev. C65, 014303 (2001)

    ADS  Google Scholar 

  11. J E Bastin et al, Phys. Rev. C73, 024308 (2006)

    ADS  Google Scholar 

  12. A Chatillon et al, International Symposium on Exotic Nuclei, “EXON 2004”, Peterhof, Russia, July 5–12, 2004 (World Scientific, 2005) p. 198

  13. R-D Herzberg, J. Phys. G30, R123 (2004)

    ADS  Google Scholar 

  14. F P Hessberger et al, Eur. Phys. J. A22, 417 (2004)

    ADS  Google Scholar 

  15. F P Hessberger et al, Nucl. Instrum. Methods B204, 597 (2003)

    ADS  Google Scholar 

  16. A Chatillon et al, Eur. Phys. J. A30, 397 (2006)

    ADS  Google Scholar 

  17. F P Hessberger et al, Eur. Phys. J. A12, 57 (2001)

    ADS  Google Scholar 

  18. M Asai et al, Phys. Rev. Lett. 95, 102502 (2005)

    Article  ADS  Google Scholar 

  19. A G Popeko et al, Phys. At. Nucl. 69, 1183 (2006)

    Article  Google Scholar 

  20. K Hauschild et al, Nucl. Instrum. Methods A560, 388 (2006)

    ADS  Google Scholar 

  21. O N Malyshev et al, Nucl. Instrum. Methods A440, 86 (2000)

    ADS  Google Scholar 

  22. O N Malyshev et al, Nucl. Instrum. Methods A516, 529 (2004)

    ADS  Google Scholar 

  23. K Hauschild, International Symposium on Exotic Nuclei, “EXON 2009”, Sochi, Russia, September 27–October 3, 2009 (World Scientific, 2010)

  24. K Hauschild et al, Phys. Rev. C78, 021302(R) (2008)

    ADS  Google Scholar 

  25. K Hauschild et al, Phys. Rev. C77, 047305 (2008)

    ADS  Google Scholar 

  26. A Lopez-Martens et al, Phys. Rev., C74, 044303 (2006)

    ADS  Google Scholar 

  27. A Lopez-Martens et al, Eur. Phys. J. A32, 245 (2007)

    ADS  Google Scholar 

  28. C E Bemis, et al, ORNL Annual Report (1974) 39

  29. B Streicher, Synthesis and spectroscopic properties of transfermium isotopes with Z = 106, 106, 107, Ph.D. thesis (Comenius University, Bratislava, Slovakia, 2006)

    Google Scholar 

  30. H Bartsch et al, Nucl. Instrum. Methods 121, 185 (1974)

    Article  ADS  Google Scholar 

  31. K H Schmidt, Eur. Phys. J. A8, 141 (2000)

    ADS  Google Scholar 

  32. P F Dittner et al, Phys. Rev. Lett. 26, 1037 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yeremin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeremin, A., Malyshev, O., Popeko, A. et al. Gamma and electron spectroscopy of transfermium isotopes at Dubna: Results and plans. Pramana - J Phys 75, 3–12 (2010). https://doi.org/10.1007/s12043-010-0060-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-010-0060-5

Keywords

Navigation