Advertisement

Pramana

, Volume 74, Issue 2, pp 189–205 | Cite as

Complete synchronization in coupled type-I neurons

  • Nishant Malik
  • B. Ashok
  • J. BalakrishnanEmail author
Article

Abstract

For a system of type-I neurons bidirectionally coupled through a nonlinear feedback mechanism, we discuss the issue of noise-induced complete synchronization (CS). For the inputs to the neurons, we point out that the rate of change of instantaneous frequency with the instantaneous phase of the stochastic inputs to each neuron matches exactly with that for the other in the event of CS of their outputs. Our observation can be exploited in practical situations to produce completely synchronized outputs in artificial devices. For excitatory-excitatory synaptic coupling, a functional dependence for the synchronization error on coupling and noise strengths is obtained. Finally, we report a noise-induced CS between nonidentical neurons coupled bidirectionally through random nonzero couplings in an all-to-all way in a large neuronal ensemble.

Keywords

Complete synchronization noise coupled type-I neurons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    D Hansel and H Sompolinsky, Phys. Rev. Lett. 68, 718 (1992)CrossRefADSGoogle Scholar
  3. [3]
    W Wang, G Perez and H A Cerdeira, Phys. Rev. E47, 2893 (1993)ADSGoogle Scholar
  4. [4]
    C van Vreeswijk, L F Abbott and G B Ermentrout, J. Comput. Neurosci. 1, 313 (1994)CrossRefGoogle Scholar
  5. [5]
    D Hansel, G Mato and C Meunier, Neural Comput. 7, 307 (1995)CrossRefGoogle Scholar
  6. [6]
    B Ermentrout, Neural Comput. 8, 979 (1996)CrossRefGoogle Scholar
  7. [7]
    C Börgers and N Kopell, Neural Comput. 15, 509 (2003)zbMATHCrossRefGoogle Scholar
  8. [8]
    C Börgers and N Kopell, Neural Comput. 17, 557 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    E Izhikevich, IEEE Trans. Neural Networks 10, 499 (1999)CrossRefGoogle Scholar
  10. [10]
    F E-N Hassan, Y Zhang, H A Cerdeira and A F Ibiyinka, Chaos 13, 1216 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. [11]
    F E-N Hassan, M Paulsamy, F F Fernando and H A Cerdeira, Chaos 19, 013103 (2009)CrossRefGoogle Scholar
  12. [12]
    S Sinha, Phys. Rev. E66, 016209 (2002)ADSGoogle Scholar
  13. [13]
    M P K Jampa, A R Sonawane, P M Gade and S Sinha, Phys. Rev. E75, 026215 (2007)MathSciNetADSGoogle Scholar
  14. [14]
    A Pikovsky, M Rosenblum and J Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001)zbMATHGoogle Scholar
  15. [15]
    H C Tuckwell, Stochastic processes in neurosciences (SIAM, Philadelphia, 1989)Google Scholar
  16. [16]
    A L Hodgkin and A F Huxley, J. Physiol. (London) 117, 500 (1952)Google Scholar
  17. [17]
    J R Rinzel and G B Ermentrout, in: Methods of neuronal modeling edited by C Koch and I Segev (MIT Press, Cambridge, MA, USA, 1989) pp. 135–169Google Scholar
  18. [18]
    C Koch, Biophysics of computation: Information processing in single neurons (Oxford University Press, NY, 1999)Google Scholar
  19. [19]
    W Lim and S-Y Kim, J. Korean Phys. Soc. 50, 219 (2007)CrossRefGoogle Scholar
  20. [20]
    V S Anishchenko, V V Astakhov, A B Neiman, T E Vadisova and L Schimansky-Geier, Nonlinear dynamics of chaotic and stochastic systems (Springer-Verlag, Berlin, 2002)zbMATHGoogle Scholar
  21. [21]
    C Zhou and J Kurths, Phys. Rev. Lett. 88, 230602 (2002)CrossRefADSGoogle Scholar
  22. [22]
    C Zhou and J Kurths, Chaos 13, 401 (2003)CrossRefADSGoogle Scholar
  23. [23]
    Y Wang, D T W Chik and Z D Wang, Phys. Rev. E61, 740 (2000)ADSGoogle Scholar
  24. [24]
    R Toral, C R Mirasso, E Hernández-Garcia and O Piro, Chaos 11, 665 (2001)zbMATHCrossRefADSGoogle Scholar
  25. [25]
    D He, P Shi and L Stone, Phys. Rev. E67, 027201 (2003)ADSGoogle Scholar
  26. [26]
    T S Parker and L O Chua, Practical numerical algorithms for chaotic systems (Springer-Verlag, Berlin, 1998)Google Scholar
  27. [27]
    J P Eckmann and D Ruelle, Rev. Mod. Phys. 57, 617 (1985)CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    J Gao and Z Zheng, Phys. Rev. E49, 3807 (1994)ADSGoogle Scholar
  29. [29]
    W Rümelin, SIAM J. Numer. Anal. 19, 604 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    J Hansen and C Penland, Monthly Weather Rev. 134, 3006 (2006)CrossRefADSGoogle Scholar
  31. [31]
    P Kloeden and E Platen, Numerical solutions of stochastic differential equations (Springer-Verlag, Berlin, 1992)Google Scholar
  32. [32]
    P Hänggi and H Thomas, Phys. Rep. 88, 207 (1982)CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    N Malik, B Ashok and J Balakrishnan (submitted) (2009)Google Scholar
  34. [34]
    W Singer and C Gray, Annu. Rev. Neurosci. 18, 555 (1995)CrossRefGoogle Scholar
  35. [35]
    A K Kreiter and W Singer, in: Brain theory: Biological basis and computational theory of vision edited by A Aertsen and V Braitenberg (Elsevier, Amsterdam, 1996)Google Scholar
  36. [36]
    W Gerstner, A F Kreiter, H Markram and A V M Herz, Proc. Natl. Acad. Sci. USA 94, 12740 (1997)CrossRefADSGoogle Scholar
  37. [37]
    W Singer, Neuron 24, 49 (1999)CrossRefGoogle Scholar
  38. [38]
    R Ritz and T J Sejnowski, Curr. Opin. Neurobiol. 7, 536 (1997)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact Research, TelegrafenbergPotsdamGermany
  2. 2.Advanced Centre for Research in High Energy Materials (ACRHEM)University of Hyderabad, Central University P.O., Gachi BowliHyderabadIndia
  3. 3.School of PhysicsUniversity of Hyderabad, Central University P.O., Gachi BowliHyderabadIndia

Personalised recommendations