Synchronization and suppression of chaos in non-locally coupled map lattices

Abstract

We considered coupled map lattices with long-range interactions to study the spatiotemporal behaviour of spatially extended dynamical systems. Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a coupling strength which varies with the lattice in a power-law fashion. Depending on the range of the interactions, complete chaos synchronization and chaos suppression may be attained. Furthermore, we also calculated the Lyapunov dimension and the transversal distance to the synchronization manifold.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J P Crutchfield and K Kaneko, in: Directions in chaos edited by Hao Bain-Lin (World Scientific, Singapore, 1987) Vol. 1, p. 272

    Google Scholar 

  2. [2]

    A Pikovsky, M Rosemblum and J Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, England, 2001)

    Google Scholar 

  3. [3]

    T Shibata and K Kaneko, Physica D181, 197 (2003)

    ADS  Google Scholar 

  4. [3a]

    P G Lind, J Corte-Real and J A C Gallas, Phys. Rev. E69, 066206 (2004)

    MathSciNet  ADS  Google Scholar 

  5. [4]

    S E de S Pinto, I L Caldas, A M Batista, S R Lopes and R L Viana, Phys. Rev. E76, 017202:1–4 (2007)

    ADS  Google Scholar 

  6. [5]

    R L Viana, C Grebogi, S E de S Pinto, S R Lopes, A M Batista and J Kurths, Physica D206, 94 (2005)

    ADS  Google Scholar 

  7. [6]

    Z Jabeen and N Gupte, Phys. Rev. E74, 016210 (2006)

    ADS  Google Scholar 

  8. [7]

    Z Jabeen and N Gupte, Pramana — J. Phys. 70(6), 1055 (2008)

    Article  ADS  Google Scholar 

  9. [8]

    A Lemmaitre and H Chaté, Phys. Rev. Lett. 82, 1140 (1999)

    Article  ADS  Google Scholar 

  10. [9]

    S Sinha, D Biswas, M Azam and S V Lawande, Phys. Rev. A46(10), 6242 (1992)

    ADS  Google Scholar 

  11. [10]

    J C A de Pontes, R L Viana, S R Lopes, C A S Batista and A M Batista, Physica A387, 4417 (2008)

    ADS  Google Scholar 

  12. [11]

    S A Cannas and F A Tamarit, Phys. Rev. B54, R12661 (1996)

    ADS  Google Scholar 

  13. [12]

    J C A de Pontes, A M Batista, R L Viana and S R Lopes, Physica A368, 387 (2006)

    ADS  Google Scholar 

  14. [13]

    R L Viana, C Grebogi, S E de S Pinto, S R Lopes, A M Batista and J Kurths, Phys. Rev. E68, 067204 (2003)

    ADS  Google Scholar 

  15. [14]

    P M Gade and S Sinha, Int. J. Bifurcat. Chaos 16(9), 2767 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  16. [15]

    A M Batista, S E de S Pinto, R L Viana and S R Lopes, Physica A322, 118 (2003)

    ADS  Google Scholar 

  17. [16]

    C A S Batista, A M Batista, J A C de Pontes, R L Viana and S R Lopes, Phys. Rev. E76, 016218:1–10 (2007)

    ADS  Google Scholar 

  18. [17]

    S Sinha, Phys. Rev. E66, 016209 (2002)

    ADS  Google Scholar 

  19. [18]

    L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. [19]

    M P K Jampa, A R Sonawane, P M Gade and S Sinha, Phys. Rev. E75, 026215 (2007)

    MathSciNet  ADS  Google Scholar 

  21. [20]

    S Rajesh, S Sinha and S Sinha, Phys. Rev. E75, 011906 (2007)

    MathSciNet  ADS  Google Scholar 

  22. [21]

    S Bocalletti, J Kurths, G Osipov, D L Valladares and C S Zhou, Phys. Rep. 366, 1 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  23. [22]

    A Mondal, S Sinha and J Kurths, Phys. Rev. E78, 066209 (2008)

    ADS  Google Scholar 

  24. [23]

    A M Batista and R L Viana, Phys. Lett. A286, 134 (2001)

    MathSciNet  ADS  Google Scholar 

  25. [24]

    H Shibata, Physica A292, 182 (2001)

    MathSciNet  ADS  Google Scholar 

  26. [25]

    C J Tessone, M Cecini and A Torcini, Phys. Rev. Lett. 97, 224101 (2006)

    Article  ADS  Google Scholar 

  27. [26]

    C Anteneodo, S E de S Pinto, A M Batista and R L Viana, Phys. Rev. E68, 045202(R) (2003)

    ADS  Google Scholar 

  28. [26a]

    C Anteneodo, A M Batista and R L Viana Phys. Lett. A326(3–4), 227 (2004)

    MathSciNet  ADS  Google Scholar 

  29. [27]

    S E de S Pinto and R L Viana, Phys. Rev. E61, 5154 (2000)

    ADS  Google Scholar 

  30. [28]

    E Ott, Chaos in dynamical systems 2nd ed. (Cambridge University Press, Cambridge, UK, 2002)

    Google Scholar 

  31. [28a]

    J-P Eckmann and D Ruelle, Rev. Mod. Phys. 57, 617 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  32. [29]

    S Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer-Verlag, New York, 1990)

    Google Scholar 

  33. [30]

    Y B Pesin, Russ. Math. Surv. 32, 55 (1977)

    Article  MathSciNet  Google Scholar 

  34. [31]

    D Ruelle, Chaotic evolution and strange attractors (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Batista.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szmoski, R.M., Pinto, S.E.D.S., Van Kan, M.T. et al. Synchronization and suppression of chaos in non-locally coupled map lattices. Pramana - J Phys 73, 999 (2009). https://doi.org/10.1007/s12043-009-0175-8

Download citation

Keywords

  • Lattice
  • synchronization
  • maps
  • suppression