Skip to main content
Log in

Spontaneous breakdown of \( \mathcal{P}\mathcal{T} \) symmetry in the complex Coulomb potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The \( \mathcal{P}\mathcal{T} \) symmetry of the Coulomb potential and its solutions are studied along trajectories satisfying the \( \mathcal{P}\mathcal{T} \) symmetry requirement. It is shown that with appropriate normalization constant the general solutions can be chosen \( \mathcal{P}\mathcal{T} \) -symmetric if the L parameter that corresponds to angular momentum in the Hermitian case is real. \( \mathcal{P}\mathcal{T} \) symmetry is spontaneously broken, however, for complex L values of the form L = −1/2 + iλ. In this case the potential remains \( \mathcal{P}\mathcal{T} \) -symmetric, while the two independent solutions are transformed to each other by the \( \mathcal{P}\mathcal{T} \) operation and at the same time, the two series of discrete energy eigenvalues turn into each other’s complex conjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C M Bender and S Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. P Dorey, C Dunning and R Tateo, J. Phys. A: Math. Gen. 34, L391 and 5679 (2001)

  3. K C Shin, Commun. Math. Phys. 229, 543 (2002)

    Article  MATH  ADS  Google Scholar 

  4. P Dorey, C Dunning and R Tateo, arXiv:hep-th/0703066

  5. E B Davies, Linear operators and their spectra (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  6. M Znojil, Phys. Lett. A259, 220 (1999)

    MathSciNet  ADS  Google Scholar 

  7. Z Ahmed, Phys. Lett. A282, 343 (2001)

    ADS  Google Scholar 

  8. G Lévai and M Znojil, Mod. Phys. Lett. A30, 1973 (2001)

    Google Scholar 

  9. M Znojil, G Lévai, P Roy and R Roychoudhury, Phys. Lett. A290, 249 (2001)

    ADS  Google Scholar 

  10. G Lévai, A Sinha and P Roy, J. Phys. A: Math. Gen. 36, 7611 (2003)

    Article  MATH  ADS  Google Scholar 

  11. A Sinha, G Lévai and P Roy, Phys. Lett. A322, 78 (2004)

    ADS  Google Scholar 

  12. M Znojil and G Lévai, Phys. Lett. A271, 327 (2000)

    ADS  Google Scholar 

  13. G Lévai and M Znojil, J. Phys. A: Math. Gen. 33, 7165 (2000)

    Article  MATH  ADS  Google Scholar 

  14. M Znojil, P Siegl and G Lévai, Phys. Lett. A373, 1921 (2009)

    ADS  Google Scholar 

  15. G Lévai, P Siegl and M Znojil, J. Phys. A: Math. Theor. 42, 295201 (2009)

    Article  Google Scholar 

  16. Z Ahmed, Phys. Lett. A324, 152 (2004)

    ADS  Google Scholar 

  17. F Cannata, J-P Dedonder and A Ventura, Ann. Phys. (N.Y.) 322, 397 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. B Bagchi, C Quesne and M Znojil, Mod. Phys. Lett. A16, 2047 (2001)

    MathSciNet  ADS  Google Scholar 

  19. G Lévai, F Cannata and A Ventura, J. Phys. A: Math. Gen. 35, 5041 (2002)

    Article  MATH  ADS  Google Scholar 

  20. G Lévai, F Cannata and A Ventura, J. Phys. A: Math. Gen. 34, 839 (2001)

    Article  MATH  ADS  Google Scholar 

  21. M Abramowitz and I A Stegun, Handbook of mathematical functions (Dover, New York, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lévai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévai, G. Spontaneous breakdown of \( \mathcal{P}\mathcal{T} \) symmetry in the complex Coulomb potential. Pramana - J Phys 73, 329–335 (2009). https://doi.org/10.1007/s12043-009-0125-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0125-5

Keywords

PACS Nos

Navigation