Skip to main content
Log in

Studies of the g factors and the superhyperfine parameters for Ni3+ in the fluoroperovskites

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The g factors and the ligand superhyperfine parameters A′ and B′ for Ni3+ in KMgF3, CsCaF3 and RbCaF3 are theoretically studied from the formulas of these parameters for a 3d7 ion under octahedral environments in the weak field scheme. The unpaired spin densities for the fluorine 2s, 2p σ and 2p π orbitals are quantitatively determined from the molecular orbital and configuration interaction coefficients based on the cluster approach. The calculated results show good agreement with the experimental data, based on only one adjustable parameter (i.e., the proportionality factor ρ related to the ligand s- and p-orbitals). The superhyperfine parameters for the axial and planar ligands in RbCaF3:Ni3+ are satisfactorily interpreted from the different impurity-ligand distances due to the elongation of the ligand octahedron during cubic-to-tetragonal phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Manaa, Y Guyot and R Moncorge, Phys. Rev. B48, 3633 (1993)

    ADS  Google Scholar 

  2. J M García-Lastra, J Y Buzaré, M T Barriuso, J A Aramburu and M Moreno, Phys. Rev. B75, 155101 (2007)

    Google Scholar 

  3. M C M de Lucas, F Rodriguez and M Moreno, J. Phys.: Condens. Matter 7, 7535 (1995)

    Article  ADS  Google Scholar 

  4. C N Avram, M G Brik, I Tanaka and N M Avram, Physica B355, 164 (2005)

    ADS  Google Scholar 

  5. F Lahoz, B Villacampa and R Alcala, J. Phys. Chem. Solids 58, 881 (1997)

    Article  ADS  Google Scholar 

  6. S López-Moraza, L Seijo and Z Barandiarán, Int. J. Quant. Chem. 77, 961 (2000)

    Article  Google Scholar 

  7. J F Li, X Y Kuang, X F Huang, C Lu and A J Mao, J. Magn. Magn. Mater. 309, 113 (2007)

    Article  ADS  Google Scholar 

  8. W C Zheng, P Ren and S Y Wu, Physica B291, 123 (2000)

    ADS  Google Scholar 

  9. S R Zhang, H G Liu, G Q Qu and W C Zheng, Phys. Stat. Solidi B245, 197 (2008)

    Article  Google Scholar 

  10. T P P Hall, W Hayes, R W H Stevenson and J Wilkens, J. Chem. Phys. 39, 35 (1963)

    Article  ADS  Google Scholar 

  11. R Alcala and B Villacampa, Solid State Commun. 90, 13 (1994)

    Article  ADS  Google Scholar 

  12. R Alcala, E Zorita and P J Alonso, Solid State Commun. 68, 167 (1988)

    Article  ADS  Google Scholar 

  13. T P P Hall, W Hayes, R W H Stevenson and J Wilkens, J. Chem. Phys. 38, 1977 (1963)

    Article  ADS  Google Scholar 

  14. J H M Thornley, C G Windsor and J Owen, Proc. R. Soc. (London) A284, 252 (1965)

    ADS  Google Scholar 

  15. A Raizman, A Schoenberg and J T Suss, Phys. Rev. B20, 1863 (1979)

    ADS  Google Scholar 

  16. S Sugano, Y Tanabe and H Kamimura, Multiplets of transition-metal ions in crystals (Academic Press, New York, 1970)

    Google Scholar 

  17. A Abragam and B Bleanely, Electron paramagnetic resonance of transition ions (Oxford University Press, London, 1970)

    Google Scholar 

  18. J Owen and J H M Thornley, Rep. Prog. Phys. 29, 675 (1966)

    Article  ADS  Google Scholar 

  19. R S Mulliken, J. Chim. Phys. 46, 497 (1967)

    Google Scholar 

  20. X Y Gao, S Y Wu, W H Wei and W Z Yan, Z. Naturforsch. A60, 145 (2005)

    Google Scholar 

  21. R D Shannon, Acta Crystallogr. A32, 751 (1976)

    ADS  Google Scholar 

  22. M Moreno, M T Barriuso and J A Aramburu, Appl. Magn. Reson. 3, 283 (1992)

    Article  Google Scholar 

  23. R M Hazen and C T Prewitt, Am. Min. 62, 309 (1977)

    Google Scholar 

  24. K A Müller, W Berlinger and F Waldner, Phys. Rev. Lett. 21, 814 (1968)

    Article  ADS  Google Scholar 

  25. H Thomas and K A Müller, Phys. Rev. Lett. 21, 1256 (1968)

    Article  ADS  Google Scholar 

  26. W C Zheng, S Y Wu and H N Dong, Physica B322, 80 (2002)

    ADS  Google Scholar 

  27. S Y Wu, W C Zheng and P Ren, Appl. Magn. Reson. 18, 565 (2000)

    Article  Google Scholar 

  28. E Clementi and D L Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  29. E Clementi, D L Raimondi and W P Reinhardt, J. Chem. Phys. 47, 1300 (1967)

    Article  ADS  Google Scholar 

  30. G C Allen and K D Warren, Inorg. Chem. 8, 1895 (1969)

    Article  Google Scholar 

  31. D Hernandez, F Rodriguez, M Moreno and H U Gudel, Physica B265, 186 (1999)

    ADS  Google Scholar 

  32. M Moreno, M T Barriuso and J A Aramburu, J. Phys.: Condens. Matter 4, 9481 (1992)

    Article  ADS  Google Scholar 

  33. H G Drickamer, in: Solid state physics edited by F Seitz and D Turnbull (Academic Press, New York, 1965) Vol. 17, p. 1

    Google Scholar 

  34. P H M Uylings, A J J Raassen and J F Wyart, J. Phys. B17, 4103 (1984)

    ADS  Google Scholar 

  35. G L McPherson, R C Kach and G D Stucky, J. Chem. Phys. 60, 1424 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y.X., Wu, S.Y., Wang, X.F. et al. Studies of the g factors and the superhyperfine parameters for Ni3+ in the fluoroperovskites. Pramana - J Phys 72, 989–997 (2009). https://doi.org/10.1007/s12043-009-0091-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0091-y

Keywords

PACS Nos

Navigation