Skip to main content
Log in

Locally-rotationally-symmetric Bianchi type-V cosmology in general relativity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A spatially homogeneous locally-rotationally-symmetric (LRS) Bianchi type-V cosmological model is considered with a perfect fluid in general relativity. We present two types of cosmologies (power-law and exponential forms) by using a law of variation for the mean Hubble parameter that yields a constant value for the deceleration parameter. We discuss the physical properties of the non-flat and flat models in each cosmology. Exact solutions that correspond to singular and non-singular models are presented. In a generic situation, models can be interpolated between different phases of the Universe. We find that a constant value for the deceleration parameter is reasonable for a description of different phases of the Universe. We arrive at the conclusion that the Universe decelerates when the value of the deceleration parameter is positive whereas it accelerates when the value is negative. The dynamical behaviours of the solutions and kinematical parameters like expansion, shear and the anisotropy parameter are discussed in detail in each section. Exact expressions for look-back time, luminosity distance and event horizon vs. redshift are derived and their significances are discussed in some detail. It has been observed that the solutions are compatible with the results of recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J E Lidsey, Class. Quant. Grav. 9, 1239 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. S Roy and A Prasad, Gen. Relativ. Gravit. 26, 939 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  3. D L Farnsworth, J. Math. Phys. 8, 2315 (1967)

    Article  MATH  ADS  Google Scholar 

  4. R Maartens and S D Nel, Commun. Math. Phys. 59, 273 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. J Wainwright, W C W Ince and Marshman, Gen. Relativ. Gravit. 10, 259 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  6. C B Collins, Commun. Math. Phys. 39, 131 (1974)

    Article  MATH  Google Scholar 

  7. A A Coley and K A Dunn, J. Math. Phys. 33, 1772 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. A A Coley and R J Hoogen, J. Math. Phys. 35, 4117 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. B L Meena and R Bali, Astrophys. Space Sci. 281, 565 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A Pradhan and A Rai, Astrophys. Space Sci. 291, 151 (2004)

    Article  MATH  ADS  Google Scholar 

  11. J Hajj-Boutros, J. Math. Phys. 26, 2297 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. J Hajj-Boutros, Class. Quant. Grav. 3, 311 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. ShriRam, Gen. Relativ. Gravit. 21, 697 (1989)

    Article  Google Scholar 

  14. ShriRam, Int. J. Theor. Phys. 29, 901 (1990)

    Article  Google Scholar 

  15. A Mazumder, Gen. Relativ. Gravit. 26, 307 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. U Camci, I Yavuz, H Baysal, I Tarhan and I Yilmaz, Astrophys. Space Sci. 275, 391 (2001)

    Article  MATH  ADS  Google Scholar 

  17. A Pradhan and A Kumar, Int. J. Mod. Phys. D10, 291 (2001)

    Google Scholar 

  18. M S Berman, Nuovo Cimento B74, 182 (1983)

    ADS  Google Scholar 

  19. M S Berman and F M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. V B Johri and K Desikan, Pramana - J. Phys. 42, 473 (1994)

    Article  ADS  Google Scholar 

  21. G P Singh and K Desikan, Pramana - J. Phys. 49, 205 (1997)

    Article  ADS  Google Scholar 

  22. S D Maharaj and R Naidoo, Astrophys. Space Sci. 208, 261 (1993)

    Article  MATH  ADS  Google Scholar 

  23. A Pradhan, V K Yadav and I. Chakrabarty, Int. J. Mod. Phys. D10, 339 (2001)

    Google Scholar 

  24. A Pradhan and A K Vishwakarma, Int. J. Theor. Phys. 11, 1195 (2002)

    MATH  ADS  MathSciNet  Google Scholar 

  25. A Pradhan and A K Vishwakarma, Indian J. Pure Appl. Math. 33, 1239 (2002)

    MATH  MathSciNet  Google Scholar 

  26. F Rahaman, N Begum and B C Bhui, Astrophys. Space Sci. 299, 211 (2004)

    Article  ADS  Google Scholar 

  27. D R K Reddy, R M V Subba and R G Koteswara, Astrophys. Space Sci. 306, 171 (2006)

    Article  ADS  Google Scholar 

  28. C P Singh and S Kumar, Int. J. Mod. Phys. D15, 419 (2006)

    ADS  MathSciNet  Google Scholar 

  29. C P Singh and S Kumar, Pramana - J. Phys. 68, 707 (2007)

    Article  ADS  Google Scholar 

  30. C P Singh and S Kumar, Astrophys. Space Sci. 310, 31 (2007)

    Article  ADS  Google Scholar 

  31. S Kumar and C P Singh, Astrophys. Space Sci. 312, 57 (2007)

    Article  MATH  ADS  Google Scholar 

  32. A A Coley, Gen. Relativ. Gravit. 22, 3 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. R Schuecker et al, Astrophys. J. 496, 635 (1998)

    Article  ADS  Google Scholar 

  34. S Perlmutter et al, Nature (London) 319, 51 (1998)

    Article  Google Scholar 

  35. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  Google Scholar 

  36. A G Riess et al, Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  37. R G Vishwakarma, Mon. Not. R. Soc. 345, 545 (2003)

    Article  ADS  Google Scholar 

  38. S W Hawking and G F R Ellis, The large scale structure of space-time (Cambridge University Press, Cambridge, 1973) p. 94

    MATH  Google Scholar 

  39. Ø Grøn, Am. J. Phys. 54, 46 (1986)

    Article  ADS  Google Scholar 

  40. B Schwarzschild, Phys. Today 40, 17 (1987)

    ADS  Google Scholar 

  41. P M Garnavich et al, Astrophys. J. 493, L53 (1998)

    Article  ADS  Google Scholar 

  42. A Kamenshchik, U Maschella and V Pasquier, Phys. Lett. B511, 265 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C.P. Locally-rotationally-symmetric Bianchi type-V cosmology in general relativity. Pramana - J Phys 72, 429–443 (2009). https://doi.org/10.1007/s12043-009-0038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0038-3

Keywords

PACS Nos

Navigation