Skip to main content
Log in

Molecular motion in restricted geometries

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time scales involved in the motion and the geometry of motion can be studied using QENS. Molecular dynamics (MD) simulation not only provides insight into the details of the different types of motion possible but also does not suffer limitations of the experimental set-up. Here we report the effect of confinement on molecular dynamics in various restricted geometries as studied by QENS and MD simulations. An example where the QENS technique provided direct evidence of phase transition associated with change in the dynamical behaviour of the molecules is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Bée, Quasielastic neutron scattering (Adam-Hilger, Bristol, 1988)

    Google Scholar 

  2. W Press, Single particle rotations in molecular crystals (Springer, Berlin, 1981)

    Google Scholar 

  3. S Mitra and R Mukhopadhyay, Curr. Sci. 84, 101 (2003)

    Google Scholar 

  4. M P Allen and D J Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  5. F R Trouw, Spectrochim. Acta, Part A A48, 455 (1992)

    Google Scholar 

  6. A Sahasrabudhe, S Mitra, A K Tripathi, R Mukhopadhyay and N M Gupta, J. Phys. Chem. B106, 10923 (2002)

    Google Scholar 

  7. A K Tripathi, A Sahasrabudhe, S Mitra, R Mukhopadhyay and N M Gupta, Phys. Chem. Chem. Phys. 3, 4449 (2001)

    Article  Google Scholar 

  8. S Mitra, R Mukhopadhyay, A K Tripathi and N M Gupta, Appl. Phys. A74, S1308 (2002)

  9. A Sahasrabudhe, S Mitra, A K Tripathi, R Mukhopadhyay and N M Gupta, Phys. Chem. Chem. Phys. 5, 3066 (2003)

    Article  Google Scholar 

  10. A Sayeed, S Mitra, A V Anil Kumar, R Mukhopadhyay, S Yashonath and S L Chaplot, J. Phys. Chem. B107, 527 (2003)

    Google Scholar 

  11. S Mitra, R Mukhopadhyay, A Sayeed, S Yashonath and S L Chaplot, Appl. Phys. A74, S1317 (2002)

  12. R Mukhopadhyay, A Sayeed, S Mitra, A V Anil Kumar, Mala N Rao, S L Chaplot and S Yashonath, Phys. Rev. E66, 061201 (2002)

  13. R Mukhopadhyay, A Sayeed, Mala N Rao, A V Anil Kumar, S Mitra, S Yashonath and S L Chaplot, Chem. Phys. 292, 217 (2003)

    Article  Google Scholar 

  14. S Mitra, S Sumitra, A M Umarji, R Mukhopadhyay, S Yashonath and S L Chaplot, Pramana — J. Phys. 63, 449 (2004)

    Article  ADS  Google Scholar 

  15. Siddharth Gautam, S Mitra, R Mukhopadhyay and S L Chaplot, Phys. Rev. E74, 041202 (2006)

  16. S Gautam, S Mitra, A Sayeed, S Yashonath, S L Chaplot and R Mukhopadhyay, Chem. Phys. Lett. 442, 311 (2007)

    Article  ADS  Google Scholar 

  17. D A Dixon and A J Komornicki, J. Phys. Chem. 94, 5630 (1990)

    Article  Google Scholar 

  18. J-M Zanotti, M-C Bellissent-Funel and S H Chen, Phys. Rev. E59, 3084 (1999)

    ADS  Google Scholar 

  19. V Rives and M A Ulibarri, Coord. Chem. Rev. 181, 61 (1999)

    Article  Google Scholar 

  20. F Cavani, F Trifiro and A Vaccari, Catal. Today 11, 173 (1991)

    Article  Google Scholar 

  21. G Marcelin, N J Stockhausen, J F M Post and A Schutz, J. Phys. Chem. 93, 4646 (1989)

    Article  Google Scholar 

  22. W Kagunya, P K Dutta and Z Lei, Physica B234–236, 910 (1997)

    Google Scholar 

  23. W Kagunya, J. Phys. Chem. 100, 327 (1996)

    Article  Google Scholar 

  24. A C Templeton, W P Wuelfing and R W Murray, Acc. Chem. Res. 33, 27 (2000)

    Article  Google Scholar 

  25. T Pradeep, S Mitra, A Sreekumaran Nair and R Mukhopadhyay, J. Phys. Chem. B108, 7012 (2004)

    Google Scholar 

  26. R Mukhopadhyay, S Mitra, T Pradeep, I Tsukushi and S Ikeda, J. Chem. Phys. 118, 4614 (2003)

    Article  ADS  Google Scholar 

  27. R Mukhopadhyay, S Mitra, M Johnson, V R Rajeev Kumar and T Pradeep, Phys. Rev. B75, 075414 (2007)

    Google Scholar 

  28. R Mukhopadhyay, S Mitra, M Johnson and T Pradeep, J. Phys.: Conf. Ser. 92, 012161 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautam, S., Mitra, S. & Mukhopadhyay, R. Molecular motion in restricted geometries. Pramana - J Phys 71, 809–818 (2008). https://doi.org/10.1007/s12043-008-0271-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0271-1

Keywords

PACS Nos

Navigation