Skip to main content
Log in

Non-classical neutron beams for fundamental and solid state research

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Rauch and S A Werner, Neutron interferometry: Lessons in experimental quantum mechanics (Oxford University Press, 2000)

  2. D Giulini, E Joos, C Kiefer, J Kupsch, L-O Stamatescu and H D Zeh, Decoherence and the appearance of a classical world in quantum theory (Springer Verlag, Berlin, 1996)

    MATH  Google Scholar 

  3. M Namiki, S Pascazio, H Nakazato, Decoherence and quantum measurement (World Scientific, Singapore, 1997)

    Google Scholar 

  4. M B Mensky, Quantum measurements and decoherence (Kluwer Academic Press, Dordrecht, 2000)

    MATH  Google Scholar 

  5. B Misra and E C G Sudershan, J. Math. Phys. 18, 756 (1977)

    Article  ADS  Google Scholar 

  6. L Fonda, G C Ghirardi and A Rimini, Rep. Progr. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  7. D Home and M A B Whitaker, Phys. Lett. A173, 327 (1993)

    ADS  Google Scholar 

  8. E Joos, Chap. 3 in [2]

    MATH  Google Scholar 

  9. H Nakazato, M Namiki, S Pascazio and H Rauch, Phys. Lett. A199, 27 (1995)

    ADS  Google Scholar 

  10. A Venugopalan and R Ghosh, Phys. Lett. A204, 11 (1995)

    ADS  Google Scholar 

  11. A Pati, Phys. Lett. A215, 7 (1996)

    ADS  Google Scholar 

  12. W H Itano, D J Heinzen, J J Bollinger and D J Wineland, Phys. Rev. A41, 2295 (1990)

    ADS  Google Scholar 

  13. A Peres, Am. J. Phys. 48, 931 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  14. P Kwiat, H Weinfurter, T Herzog, A Zeilinger and M Kasevich, Phys. Rev. Lett. 74, 4763 (1995)

    Article  ADS  Google Scholar 

  15. S Pascazio, M Namiki, G Badurek and H Rauch, Phys. Lett. A179, 155 (1993)

    ADS  Google Scholar 

  16. K Machida, H Nakazato, S Pascazio, H Rauch and S Yu, Phys. Rev. A60, 3448 (1999)

    ADS  Google Scholar 

  17. Z Hradil, H Nakazato, M Namiki, S Pascazio and H Rauch, Phys. Lett. A239, 333 (1998)

    Google Scholar 

  18. A C Elitzur and L Vaidman, Found. Phys. 23, 987 (1993)

    Article  ADS  Google Scholar 

  19. A Peres, Phys. Lett. A151, 107 (1990)

    ADS  MathSciNet  Google Scholar 

  20. N D Mermin, Phys. Rev. Lett. 65, 3373 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. N D Mermin, Rev. Mod. Phys. 65, 803 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. H Rauch, Phys. Lett. A173, 240 (1993)

    ADS  Google Scholar 

  23. L Mandel and W Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995)

  24. H Rauch, H Wölwitsch, H Kaiser, R Clothier and S A Werner, Phys. Rev. A53, 902 (1996)

    ADS  Google Scholar 

  25. R Clothier, H Kaiser, S A Werner, H Rauch and H Wölwitsch, Phys. Rev. A44, 5357 (1991)

    ADS  Google Scholar 

  26. F Mezei, Z. Physik 255, 146 (1972)

    Article  ADS  Google Scholar 

  27. G Badurek, H Rauch and A Zeilinger, in: Neutron spin echo edited by F Mezei, Lect. Notes Phys. (Springer Verlag, Berlin, 1980) Vol. 128, p. 136

    Chapter  Google Scholar 

  28. H Rauch, J. Phys. Conf. Series 36, 431 (2006)

    Article  MathSciNet  Google Scholar 

  29. F Mezei, Commun. Phys. 1, 81 (1976)

    Google Scholar 

  30. V F Sears, Acta Crystallogr. A39, 601 (1983)

    Google Scholar 

  31. M R Jaekel, E Jericha and H Rauch, Nucl. Instrum. Methods A539, 335 (2005)

    Google Scholar 

  32. L Mandel and E Wolf, Rev. Mod. Phys. 37, 231 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  33. G S Agarwal and D F V James, J. Mod. Opt. 40, 1431 (1993)

    Article  Google Scholar 

  34. D L Jacobson, S A Werner and H Rauch, Phys. Rev. A49, 3196 (1994)

    ADS  Google Scholar 

  35. D M Greenberger and A Yasin, Phys. Lett. 128, 391 (1988)

    Article  Google Scholar 

  36. B-G Englert, Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  37. P Ghose, Testing quantum mechanics on new grounds (Cambridge University Press, 1999)

  38. C Miniatura, C A Muller, Y Lu, G Q Wang and B G Englert, Phys. Rev. A76, 022101 (2007)

  39. M Zawisky, M Baron and R Loidl, Phys. Rev. A66, 063608 (2002)

  40. M Zawisky, Found. Phys. Lett. 17, 561 (2004)

    Article  Google Scholar 

  41. S S Afshar, E Flores, K F McDonalds and E Knoesel, Found. Phys. 37, 295 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. E P Wigner, Phys. Rev. 40, 749 (1932)

    Article  MATH  Google Scholar 

  43. L Mandel and E Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995)

  44. M Suda, Quantum interferometry in phase space (Springer, Berlin, 2006)

    Google Scholar 

  45. M Freyberger, S H Kienle and V P Yakovlev, Phys. Rev. A56, 195 (1997)

    ADS  Google Scholar 

  46. U Leonhardt, Measuring the quantum state of light (Cambridge University Press, 1997)

  47. P W Schleich, Quantum interferometry in phase space (Wiley-VCH, Berlin, 2001)

    Google Scholar 

  48. Y Hasegawa, R Loidl, G Badurek, S Filipp, J Klepp and H Rauch, Phys. Rev. A76, 052108 (2007)

    Google Scholar 

  49. H Rauch and M Suda, in: Neutron spin-echo spectroscopy edited by F Mezei, C Pappas, T Gutberlet (Springer, Berlin, 2003) p. 133

    Chapter  Google Scholar 

  50. J S Bell, Physics 1, 195 (1964)

    Google Scholar 

  51. R A Bertlmann and A Zeilinger (eds.), Quantum [un]speakables (Springer, Berlin, 2002)

    Google Scholar 

  52. Y Hasegawa, R Loidl, G Badurek, M Baron and H Rauch, Nature (London) 425, 45 (2003)

    Article  ADS  Google Scholar 

  53. S Kochen and E P Specker, J. Math. Mech. 17, 59 (1967)

    MATH  MathSciNet  Google Scholar 

  54. N D Mermin, Rev. Mod. Phys. 65, 803 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  55. Y Hasegawa, R Loidl, G Badurek, M Baron and H Rauch, Phys. Rev. Lett. 97, 230401 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, H. Non-classical neutron beams for fundamental and solid state research. Pramana - J Phys 71, 785–796 (2008). https://doi.org/10.1007/s12043-008-0269-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0269-8

Keywords

PACS Nos

Navigation