Skip to main content
Log in

Analysis of protein folds using protein contact networks

Pramana Aims and scope Submit manuscript

Abstract

Proteins are important biomolecules, which perform diverse structural and functional roles in living systems. Starting from a linear chain of amino acids, proteins fold to different secondary structures, which then fold through short- and long-range interactions to give rise to the final three-dimensional shapes useful to carry out the biophysical and biochemical functions. Proteins are defined as having a common ‘fold’ if they have major secondary structural elements with same topological connections. It is known that folding mechanisms are largely determined by a protein’s topology rather than its interatomic interactions. The native state protein structures can, thus, be modelled, using a graph-theoretical approach, as coarse-grained networks of amino acid residues as ‘nodes’ and the inter-residue interactions/contacts as ‘links’. Using the network representation of protein structures and their 2D contact maps, we have identified the conserved contact patterns (groups of contacts) representing two typical folds — the EF-hand and the ubiquitin-like folds. Our results suggest that this direct and computationally simple methodology can be used to infer about the presence of specific folds from the protein’s contact map alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L H Greene and V A Higman, J. Mol. Biol. 334, 781 (2003)

    Article  Google Scholar 

  2. N Kannan and S Vishveshwara, J. Mol. Biol. 292, 441 (1999)

    Article  Google Scholar 

  3. K V Brinda and S Vishveshwara, Biophys. J. 89, 4159 (2005)

    Article  Google Scholar 

  4. K V Brinda and S Vishveshwara, Biophys. J. 92, 2523 (2007)

    Article  Google Scholar 

  5. Md. Aftabuddina and S Kundu, Physica A396, 896 (2006)

    Google Scholar 

  6. M Vendruscolo, N V Dokholyan, E Paci and M Karplus, Phys. Rev. E65, 061910 (2002)

    Google Scholar 

  7. U K Muppirala and Zhijun Li, Protein Engineering, Design & Selection 19, 265 (2006)

    Article  Google Scholar 

  8. G Bagler and Somdatta Sinha, Physica A346, 27 (2005)

    ADS  Google Scholar 

  9. G Bagler and Somdatta Sinha, Bioinformatics 23, 1760 (2007)

    Article  Google Scholar 

  10. N S Shiju Lal and Somdatta Sinha, Proceedings of the 11th ADNAT Convention on Advances in Structural Biology and Structure Prediction 134 (2007)

  11. Murzin et al, J. Mol. Biol. 247, 536 (1995)

    Google Scholar 

  12. G Pollastri and P Baldi, Bioinformatics 18, S62 (2002)

    Google Scholar 

  13. D R Westhead, D C Hatton and J M Thornton, Trends in Biochem. Sci. 23, 35 (1998)

    Article  Google Scholar 

  14. A Godzik, J Skolnick and A Kolinski, J. Mol. Biol. 227, 227 (1999)

    Article  Google Scholar 

  15. J Selbig and P Argos, Proteins: Struct. Funct. Genet. 31, 172 (1998)

    Article  Google Scholar 

  16. A M Lesk, L L Conte and T J P Hubbard, Proteins 45(S5), 98 (2001)

    Article  Google Scholar 

  17. A R Ortiz, A Kolinski, P Rotkiewiez and J Skolnick, Proteins Suppl. 3, 177 (1999)

    Article  Google Scholar 

  18. Bernstein et al, J. Mol. Biol. 112, 535 (1977)

    Article  Google Scholar 

  19. H M Berman, J Westbrook, Z Feng, G Gilliland, T N Bhat, H Weissig, I N Shindyalov and P E Bourne, Nucleic Acids Res. 28, 235 (2000)

    Article  Google Scholar 

  20. W L DeLano, The PyMOL Molecular Graphics System (2002), www.pymol.org

  21. The MathWorks, Inc. (www.mathworks.com/)

  22. V Batagelj and A Mrvar, in Graph drawing software edited by M Jünger and P Mutzel (Springer, Berlin, 2003) p. 77

    Google Scholar 

  23. C Rao-Naik, W delaCruz, J M Laplaza, S Tan, J Callis and A J Fisher, J. Biol. Chem. 273, 34976 (1998)

    Article  Google Scholar 

  24. A Buchberger, M J Howard, M Proctor and M Bycroft, J. Mol. Biol. 307, 17 (2001)

    Article  Google Scholar 

  25. W Gronwald, F Huber, P Grunewald, M Sporner, S Wohlgemuth, C Herrmann and H R Kalbitzer, Structure 9, 1029 (2001)

    Article  Google Scholar 

  26. J L Enmon, T de Beer and M Overduin, Biochemistry 39, 4309 (2000)

    Article  Google Scholar 

  27. S Kim, D N Cullis, L A Feig and J D Baleja, Biochemistry 40, 6776 (2001)

    Article  Google Scholar 

  28. M Andersson, A Malmendal, S Linse, I Ivarsson, S Forsen and L A Svensson, Protein Sci. 6, 1139 (1997)

    Article  Google Scholar 

  29. J P Declercq, C Evrard, V Lamzin and J Parello, Protein Sci. 8, 2194 (1999)

    Article  Google Scholar 

  30. S Nakayama, N D Moncrief and R H Kretsinger, J. Mol. Evol. 34, 416 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barah, P., Sinha, S. Analysis of protein folds using protein contact networks. Pramana - J Phys 71, 369–378 (2008). https://doi.org/10.1007/s12043-008-0170-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0170-5

Keywords

PACS Nos

Navigation