Skip to main content
Log in

Impedance analysis of Bi3.25La0.75Ti3O12 ferroelectric ceramic

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

AC impedance spectroscopy technique has been used to study electrical properties of Bi3.25La0.75Ti3O12 (BLT) ceramic. Complex impedance plots were fitted with three depressed semicircles, which are attributed to crystalline layer, plate boundary and grain boundary and all three were found to comprise of universal capacitance nature [C = C0w n−1]. Grain boundary resistance and capacitance evaluated from complex impedance plots have larger values than that of plate boundary and crystalline layer. The activation energies (E a) for DC-conductance in grain boundary, plate boundary and crystalline layer are 0.68 eV, 0.89 eV and 0.89 eV, respectively. Relaxation activation energies calculated from impedance plots showed similar values, 0.81 eV and 0.80 eV for crystalline layer and plate boundary, respectively. These activation energy values are found to be consistent with the E a value of oxygen vacancies in perovskite materials. A mechanism is offered to explain the generation of oxygen vacancies in BLT ceramic and its role in temperature dependence of DC-conductance study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B H Park, B S Kang, S Bu, T W Noh, J Lee and W Jo, Nature (London) 401, 682 (1999)

    Article  ADS  Google Scholar 

  2. E Rokuta, J H Choi, Y Hotta, H Tabata, H Kobayashi and T Kawai, Appl. Phys. Lett. 79, 1858 (2001)

    Article  ADS  Google Scholar 

  3. B Aurivillius, Ark Kemi 1, 499 (1949)

    Google Scholar 

  4. J F Scott and C A Pazde Arajuo, Science 246, 1400 (1989)

    Article  ADS  Google Scholar 

  5. C A Paz de Araujo, J D Cuchiaro, L D McMillan, M C Scott and J F Scott, Nature (London) 374, 627 (1995)

    Article  ADS  Google Scholar 

  6. S B Desu and D P Vijay, Mater. Sci. Engg. B32, 75 (1995)

    Google Scholar 

  7. E C Subbarao, J. Phys. Chem. Solids 23, 665 (1962)

    Article  ADS  Google Scholar 

  8. C Javalekic and S Stevic, Ferroelectrics 132, 185 (1992)

    Google Scholar 

  9. S E Cummins and L E Cross, J. Appl. Phys. 39, 2268 (1968)

    Article  ADS  Google Scholar 

  10. P C Joshi and S B Krupanidhi, Appl. Phys. Lett. 62, 1928 (1993)

    Article  ADS  Google Scholar 

  11. T Kijima, M Ushikubo and M Matsunaga, Jpn. J. Appl. Phys. 38, 127 (1999)

    Article  ADS  Google Scholar 

  12. A Fouskova and L E Cross, J. Appl. Phys. 41, 2834 (1970)

    Article  ADS  Google Scholar 

  13. S Eharta, K Muramatsu, M Shimazu, J Tanaka, M Tsukioka, Y Mori, T Hattori and H Tamura, Jpn. J. Appl. Phys. 20, 877 (1981)

    Article  ADS  Google Scholar 

  14. Masatake Takahashi, Yuji Noguchi and Masaru Miyayama, Jpn. J. Appl. Phys. 41, 7053 (2002)

    Article  ADS  Google Scholar 

  15. J H Park, J S Bae, B C Choi and J H Jeong, J. Phys. D40, 579 (2007)

    ADS  Google Scholar 

  16. D Johnson, Software Zview-v 2.3d, Scribner Associates Inc. (2000)

  17. A Huanosta, O Alvarez-Fregoso and E Amano, J. Appl. Phys. 69, 404 (1991)

    Article  ADS  Google Scholar 

  18. T Takenaka and K Sakata, Ferroelectrics 38, 769 (1981)

    Google Scholar 

  19. W D Kingery, H K Bowen and D R Uhlmann, Introduction to ceramics (Wiley, New York, 1976)

    Google Scholar 

  20. K H Hardtl, Ceram. Int. 8(4), 121 (1982)

    Article  Google Scholar 

  21. Holly S Shulman, J. Am. Ceram. Soc. 80(3), 528 (2000)

    Google Scholar 

  22. Z S Macedo, C R Ferrari and A C Hernandes, J. European Ceramic Soc. 24, 2567 (2004)

    Article  Google Scholar 

  23. J R MacDonald, Impedance spectroscopy — emphasizing solid materials and systems (John Wiley & Sons, 1987)

  24. A K Jonscher, Dielectric relaxation in solids (Chelsea, London, 1983)

    Google Scholar 

  25. X S Gao, J M Xue and J Wang, J. Appl. Phys. 97, 034101 (2005)

  26. A Pelaiz-Barranco, M P Gutierrez-Amador, A Huanosta and R Valenzuela, Appl. Phys. Lett. 73(14), 2039 (1998)

    Article  ADS  Google Scholar 

  27. O A Fregoso, J. Appl. Phys. 81, 1387 (1997)

    Article  ADS  Google Scholar 

  28. W Li, D Su, J Zhu and Y Wang, Solid State Commun. 131, 189 (2004)

    Article  ADS  Google Scholar 

  29. S K Kim, M Miyayama and H Yanagida, Mater. Res. Bull. 31, 121 (1996)

    Article  Google Scholar 

  30. A D Brailsford and D K Honke, Solid State Ionics 11, 235 (1983)

    Google Scholar 

  31. S Rachna, Sudipto Bhattacharyya and S M Gupta, J. Phys. Chem. Solids 69, 822 (2008)

    Article  ADS  Google Scholar 

  32. H N Al-Shareef, D Dimos, T J Boyle, W L Warren and B A Tuttle, Appl. Phys. Lett. 68, 690 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rachna, S., Gupta, S.M. & Bhattacharyya, S. Impedance analysis of Bi3.25La0.75Ti3O12 ferroelectric ceramic. Pramana - J Phys 71, 599–610 (2008). https://doi.org/10.1007/s12043-008-0135-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0135-8

Keywords

PACS Nos

Navigation