Skip to main content
Log in

Model for modulated and chaotic waves in zero-Prandtl-number rotating convection

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of time-periodic forcing in a few-mode model for zero-Prandtl-number convection with rigid body rotation is investigated. The time-periodic modulation of the rotation rate about the vertical axis and gravity modulation are considered separately. In the presence of periodic variation of the rotation rate, the model shows modulated waves with a band of frequencies. The increase in the external forcing amplitude widens the frequency band of the modulated waves, which ultimately leads to temporally chaotic waves. The gravity modulation, on the other hand, with small frequencies, destroys the quasiperiodic waves at the onset and leads to chaos through intermittency. The spectral power density shows more power to a band of frequencies in the case of periodic modulation of the rotation rate. In the case of externally imposed vertical vibration, the spectral density has more power at lower frequencies. The two types of forcing show different routes to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Venezian, J. Fluid Mech. 35, 243 (1969)

    Article  MATH  ADS  Google Scholar 

  2. S Rosenblatt and G A Tanaka, Phys. Fluids 14, 1319 (1971)

    Article  ADS  Google Scholar 

  3. G Z Gershuni and E M Zhukhovitskii, Convective stability of incompressible fluids, translated from Russian by D Louvish (Keter Publications, Jerusalem/Wiley, 1976)

  4. G Ahlers, P C Hohenberg and M Lücke, Phys. Rev. Lett. 53, 48 (1984)

    Article  ADS  Google Scholar 

  5. G Ahlers, P C Hohenberg and M Lücke, Phys. Rev. A32, 3493 (1985); Phys. Rev. A32, 3519 (1985)

    ADS  Google Scholar 

  6. M Lücke, Bifurcation behavior under modulated control parameters, in: Noise in nonlinear dynamical systems edited by F Moss and P V E McClintock (Cambridge University Press, Cambridge, UK, 1987) Vol. 2, p. 100

    Google Scholar 

  7. P C Hohenberg and J B Swift, Phys. Rev. A27, 3855 (1987)

    ADS  MathSciNet  Google Scholar 

  8. T B Benjamin and F Ursel, Proc. R. Soc. (London) A225, 505 (1954)

    ADS  Google Scholar 

  9. J W Miles and D Henderson, Annu. Rev. Fluid Mech. 22, 143 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. M N Roppo, S H Davis and S Rosenblatt, Phys. Fluids 27, 796 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. S Schmitt and M Lücke, Phys. Rev. A44, 4986 (1991)

    ADS  Google Scholar 

  12. U V Volmar and H W Müller, Phys. Rev. E56, 5423 (1997)

    ADS  Google Scholar 

  13. J B Swift and P C Hohenberg, Phys. Rev. A36, 4870 (1987); Phys. Rev. A39, 4132 (1989)

    ADS  MathSciNet  Google Scholar 

  14. J L Roger, M F Schatz, J L Bougie and J B Swift, Phys. Rev. Lett. 84, 87 (2000)

    Article  ADS  Google Scholar 

  15. R J Donelly, F Reif and H Suhl, Phys. Rev. Lett. 9, 363 (1962)

    Article  ADS  Google Scholar 

  16. C W Meyer, G Ahlers and D S Cannell, Phys. Rev. Lett. 59, 1577 (1987)

    Article  ADS  Google Scholar 

  17. C W Meyer, D S Cannel, G Ahlers, J B Swift and P C Hohenberg, Phys. Rev. Lett. 61, 947 (1988)

    Article  ADS  Google Scholar 

  18. C W Meyer, D S Cannel and G Ahlers, Phys. Rev. A45, 8583 (1992)

    ADS  Google Scholar 

  19. J J Niemela and R J Donnelly, Phys. Rev. Lett. 57, 583 (1986); Phys. Rev. Lett. 59, 2431 (1987)

    Article  ADS  Google Scholar 

  20. K L Thompson, K M S Bajaj and G Ahlers, Phys. Rev. E65, 046218 (2002)

    Google Scholar 

  21. G Ahlers, Phys. Rev. Lett. 33, 1185 (1974)

    Article  ADS  Google Scholar 

  22. J P Gollub and H Swinney, Phys. Rev. Lett. 35, 927 (1975)

    Article  ADS  Google Scholar 

  23. M Dubois and P Bergé, J. Phys. Lett., France 42, 167 (1981)

    Article  Google Scholar 

  24. K Kumar, S Chaudhuri and A Das, Phys. Rev. E65, 026311 (2002)

  25. M C Cross and P C Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  26. E Bodenschatz, W Pesch and G Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. S Chandrasekhar, Hydrodynamic and hydromagnetic stability (Oxford Univ. Press, New York, 1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaka Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Kumar, K. Model for modulated and chaotic waves in zero-Prandtl-number rotating convection. Pramana - J Phys 71, 545–557 (2008). https://doi.org/10.1007/s12043-008-0130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0130-0

Keywords

PACS Nos

Navigation