The dynamical origin of physiological instructions used in birdsong production

Abstract

In this work we report experimental measurements of pressure patterns used in canary song. We find that these patterns are qualitatively similar to the subharmonic solutions of a simple dynamical system. This is built to account for the activities of subpopulations of neurons arranged in a simple architecture compatible with anatomical observations. The consequences of Hebbian plasticity in the coupling between the driving and the driven systems are outlined.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    P Marler and H Slabbekoorn, Nature’s music, the science of birdsong (Elsevier, San Diego, 2004)

  2. [2]

    F Goller and R A Suthers, Nature (London) 373, 63 (1995)

    Article  ADS  Google Scholar 

  3. [3]

    R A Suthers, How birds sing and why it matters, in Nature’s music, the science of birdsong edited by P Marler and H Slabbekoorn (Elsevier, San Diego, 2004) pp. 272–295

    Google Scholar 

  4. [4]

    E D Jarvis, Brains and birdsong, in Nature’s music, the science of birdsong edited by P Marler and H Slabbekoorn (Elsevier, San Diego, 2004) pp. 226–271

    Google Scholar 

  5. [5]

    A J Doupe, M M Solis, R Kimpo and C A Boetinger, Ann. N.Y. Acad. Sci. 1016, 495 (2004)

    Article  Google Scholar 

  6. [6]

    T Gardner, G Cecchi, M Magnasco, R Laje and G B Mindlin, Phys. Rev. Lett. 87, 208101, 1–4 (2001)

  7. [7]

    R Laje and G B Mindlin, Phys. Rev. E65 art. 051921, 1 (2002)

    Google Scholar 

  8. [8]

    G B Mindlin, T J Gardner, F Goller and R Suthers, Phys. Rev. E68, 041908 (2003)

  9. [9]

    F Goller and R A Suthers, J. Neurophysiol. 75, 867 (1996)

    Google Scholar 

  10. [10]

    R A Suthers, F Goller and C Pytte, Philos. Trans. R. London B354, 927 (1999)

    Article  Google Scholar 

  11. [11]

    G B Mindlin and R Laje, The physics of birdsong (Springer, New York, 2005)

    Google Scholar 

  12. [12]

    F Nottebohm and A P Arnold, Science 194, 211 (1976)

    Article  ADS  Google Scholar 

  13. [13]

    A C Yu and D Margoliash, Science 273, 1871 (1996)

    Article  ADS  Google Scholar 

  14. [14]

    C B Sturdy, J M Wild and R Mooney, J. Neurosci. 23, 1072 (2003)

    Google Scholar 

  15. [15]

    J Spiro, M Dalva and R Mooney, J. Neurophysiol. 81, 3007 (1999)

    Google Scholar 

  16. [16]

    R H Hahnloser, A A Kozhevnikov and M S Fee, Nature (London), 419, 65 (2002)

    Article  ADS  Google Scholar 

  17. [17]

    M A Trevisan, G B Mindlin and F Goller, Phys. Rev. Lett. 96, 058103 (2006)

  18. [18]

    Z Chi and D Margoliash, Neuron 32, 899 (2001)

    Article  Google Scholar 

  19. [19]

    H D I Abarbanel, L Gibb, G B Mindlin and S Talathi, J. Neurophysiol. 92, 96 (2004)

    Article  Google Scholar 

  20. [20]

    F C Hoppensteadt and E M Izhikevich, Weakly connected neural networks (Springer-Verlag New York, Inc., Secaucus, NJ, 1997)

    Google Scholar 

  21. [21]

    O Piro and D Gonzalez, Phys. Rev. A37, 4060 (1988)

    ADS  Google Scholar 

  22. [22]

    M S Brainard and A J Doupe, Nature (London) 417, 351 (2002)

    Article  ADS  Google Scholar 

  23. [23]

    A Pikovsky, M Ronsenblum and J Khurths, Synchronization (Cambridge University Press, 2001)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriel B. Mindlin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arneodo, E.M., Alonso, L.M., Alliende, J.A. et al. The dynamical origin of physiological instructions used in birdsong production. Pramana - J Phys 70, 1077–1085 (2008). https://doi.org/10.1007/s12043-008-0112-2

Download citation

Keywords

  • Birdsong
  • dynamics
  • Hebbian

PACS Nos

  • 05.45.Xt
  • 43.70.+i
  • 87.10.Ed