Advertisement

Pramana

, Volume 70, Issue 6, pp 1077–1085 | Cite as

The dynamical origin of physiological instructions used in birdsong production

  • Ezequiel M. Arneodo
  • Leandro M. Alonso
  • Jorge A. Alliende
  • Gabriel B. MindlinEmail author
Article

Abstract

In this work we report experimental measurements of pressure patterns used in canary song. We find that these patterns are qualitatively similar to the subharmonic solutions of a simple dynamical system. This is built to account for the activities of subpopulations of neurons arranged in a simple architecture compatible with anatomical observations. The consequences of Hebbian plasticity in the coupling between the driving and the driven systems are outlined.

Keywords

Birdsong dynamics Hebbian 

PACS Nos

05.45.Xt 43.70.+i 87.10.Ed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P Marler and H Slabbekoorn, Nature’s music, the science of birdsong (Elsevier, San Diego, 2004)Google Scholar
  2. [2]
    F Goller and R A Suthers, Nature (London) 373, 63 (1995)CrossRefADSGoogle Scholar
  3. [3]
    R A Suthers, How birds sing and why it matters, in Nature’s music, the science of birdsong edited by P Marler and H Slabbekoorn (Elsevier, San Diego, 2004) pp. 272–295CrossRefGoogle Scholar
  4. [4]
    E D Jarvis, Brains and birdsong, in Nature’s music, the science of birdsong edited by P Marler and H Slabbekoorn (Elsevier, San Diego, 2004) pp. 226–271CrossRefGoogle Scholar
  5. [5]
    A J Doupe, M M Solis, R Kimpo and C A Boetinger, Ann. N.Y. Acad. Sci. 1016, 495 (2004)CrossRefGoogle Scholar
  6. [6]
    T Gardner, G Cecchi, M Magnasco, R Laje and G B Mindlin, Phys. Rev. Lett. 87, 208101, 1–4 (2001)Google Scholar
  7. [7]
    R Laje and G B Mindlin, Phys. Rev. E65 art. 051921, 1 (2002)Google Scholar
  8. [8]
    G B Mindlin, T J Gardner, F Goller and R Suthers, Phys. Rev. E68, 041908 (2003)Google Scholar
  9. [9]
    F Goller and R A Suthers, J. Neurophysiol. 75, 867 (1996)Google Scholar
  10. [10]
    R A Suthers, F Goller and C Pytte, Philos. Trans. R. London B354, 927 (1999)CrossRefGoogle Scholar
  11. [11]
    G B Mindlin and R Laje, The physics of birdsong (Springer, New York, 2005)Google Scholar
  12. [12]
    F Nottebohm and A P Arnold, Science 194, 211 (1976)CrossRefADSGoogle Scholar
  13. [13]
    A C Yu and D Margoliash, Science 273, 1871 (1996)CrossRefADSGoogle Scholar
  14. [14]
    C B Sturdy, J M Wild and R Mooney, J. Neurosci. 23, 1072 (2003)Google Scholar
  15. [15]
    J Spiro, M Dalva and R Mooney, J. Neurophysiol. 81, 3007 (1999)Google Scholar
  16. [16]
    R H Hahnloser, A A Kozhevnikov and M S Fee, Nature (London), 419, 65 (2002)CrossRefADSGoogle Scholar
  17. [17]
    M A Trevisan, G B Mindlin and F Goller, Phys. Rev. Lett. 96, 058103 (2006)Google Scholar
  18. [18]
    Z Chi and D Margoliash, Neuron 32, 899 (2001)CrossRefGoogle Scholar
  19. [19]
    H D I Abarbanel, L Gibb, G B Mindlin and S Talathi, J. Neurophysiol. 92, 96 (2004)CrossRefGoogle Scholar
  20. [20]
    F C Hoppensteadt and E M Izhikevich, Weakly connected neural networks (Springer-Verlag New York, Inc., Secaucus, NJ, 1997)Google Scholar
  21. [21]
    O Piro and D Gonzalez, Phys. Rev. A37, 4060 (1988)ADSGoogle Scholar
  22. [22]
    M S Brainard and A J Doupe, Nature (London) 417, 351 (2002)CrossRefADSGoogle Scholar
  23. [23]
    A Pikovsky, M Ronsenblum and J Khurths, Synchronization (Cambridge University Press, 2001)Google Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • Ezequiel M. Arneodo
    • 1
  • Leandro M. Alonso
    • 1
  • Jorge A. Alliende
    • 1
  • Gabriel B. Mindlin
    • 1
    Email author
  1. 1.Departamento de Física, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations