Skip to main content
Log in

Visual explorations of dynamics: The standard map

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The Macintosh application StdMap allows easy exploration of many of the phenomena of area-preserving mappings. This tutorial explains some of these phenomena and presents a number of simple experiments centered on the use of this program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J D Meiss, Rev. Mod. Phys. 64(3), 795 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. A J Lichtenberg and M A Lieberman, Regular and Chaotic Dynamics, volume 38 of Applied Mathematical Sciences, 2nd edition (Springer-Verlag, New York, 1992)

    Google Scholar 

  3. S Aubry, Physica D7, 240 (1983)

    ADS  MathSciNet  Google Scholar 

  4. For the purposes of this introduction, if you have ever used StdMap before, you should delete the preference file :_/Library/Preferences/edu.colorado.stdmap.plist, so that you can start the application in its default state.

  5. For the significance of this parameter value, see §7.

  6. On my 3 GHz machine, N is 91074 to give an elapsed time for N iterations of about 1/60-second. You can view or change this using the Change menu and selecting Speedometer....

  7. R De La Llave, A tutorial on KAM theory, in: Smooth ergodic theory and its applications (Seattle, WA, 1999), volume 69 of Proc. Symp. Pure Math. (Amer. Math. Soc., Providence, 2001) pp. 175–292

    Google Scholar 

  8. J Pöschel, A lecture on the classical KAM theorem, in: Smooth ergodic theory and its applications (Seattle, WA 1999), volume 69 of Proc. Symp. Pure Math. (Amer. Math. Soc., Providence, 2001) pp. 707–732

    Google Scholar 

  9. R Eykholt and D K Umberger, Phys. Rev. Lett. 57(19), 2333 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. J D Hanson, Phys. Rev. A(3), 35(3), 1470 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. J D Meiss, Physica D74(3&4), 254 (1994)

    ADS  MathSciNet  Google Scholar 

  12. The second way to slow iteration is to decrease the global variable N that represents the number of iterates done for each function call when you are in continuous iteration mode, ⌘-G. You can do this with Change → Speedometer.

  13. It is a standard Macintosh convention that drawing is constrained if you hold down the shift key. In this case, the line will be constrained to be exactly vertical, horizontal or at forty-five degrees. Constrained drawing is also an easy way to draw squares and circles.

  14. P L Boyland, Rotation sets and Morse decompositions in twist maps, Ergodic Theory Dynam. Systems, 8* (Charles Conley Memorial Issue), 33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. S Hu, Comm. Math. Phys. 191, 627 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. A P Veselov, Russian Math. Surveys 46(5), 1 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. E M McMillan, A Problem in the Stability of Periodic Systems, in: Topics in Modern Physics, a Tribute to E.V. Condon edited by E E Brittin and H Odabasi (Colorado Assoc. Univ. Press, Boulder, 1971) pp. 219–244

    Google Scholar 

  18. Yu B Suris, Funct. Anal. Appl. 23, 74 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. In StdMap, the Suris map has a second term πb sin(2πx) that destroys integrability when b ≠ 0. Type ⌥-⌘-1 to access it; here ⌥-is the option key — hold this key down and then type ⌘-1. This map was studied in H E Lomelí and J D Meiss, Phys. Lett. A269(5–6), 309 (2000)[20].

    ADS  Google Scholar 

  20. H E Lomelí and J D Meiss, Phys. Lett. A269(5–6), 309 (2000)

    ADS  Google Scholar 

  21. The initial condition dialog has a pop-up menu labeled symmetry. The default setting for this is minimize, and this gives the orbit above. Choosing minimax from this menu will give the elliptic (2,5) orbit. The symmetries of periodic orbits will be discussed in §6.

  22. J M Greene, J. Math. Phys. 9, 760 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. J M Greene, R S MacKay, F Vivaldi and M J Feigenbaum, Physica D3, 468 (1981)

    ADS  MathSciNet  Google Scholar 

  24. C Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, Studies in Advanced Mathematics, 2nd edition (CRC Press, Boca Raton, Fla., 1999)

    Google Scholar 

  25. J D Meiss, Differential Dynamical Systems, volume 14 of Mathematical Modeling and Computation (SIAM, Philadelphia, 2007)

    Google Scholar 

  26. D Hobson, J. Comput. Phys. 104(1), 14 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. There is also a pop-up menu for selecting the symmetry of the orbit. Leave this set at the default minimizing as this corresponds to the hyperbolic saddle.

  28. We allocate an array that is no more than half the physical memory in your computer and no larger than needed to contain up to 10 times the number of pixels in the plot window.

  29. V F Lazutkin, I G Schachmacnnkki and M B Tabanov, Physica D40, 235 (1989)

    ADS  Google Scholar 

  30. V G Gelfreikh and V F Lazutkin, Russian Math. Surveys 56(3), 499 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. H Poincaré, Les Methodes Nouvelles de la Mechanique Celeste (Gauthier-Villars, Paris, 1892) volume 3, §397

    Google Scholar 

  32. S Smale, Mathematical Intelligencer 290, 39 (1998)

    Article  MathSciNet  Google Scholar 

  33. Do not set a = 1 for the Suris map, as in this case F(x) = 2x and every point is parabolic and has period-4. The Suris map approximates the standard map with ak/4, so try a = 1/4 to obtain a picture similar to the left pane of figure 7.

  34. J W S Lamb and J A G Roberts, Physica D112, 1 (1998)

    ADS  MathSciNet  Google Scholar 

  35. Here we are really considering the lift of the map to the plane, by undoing the mod 1 operation. It is convenient to do this to count the number of rotations of an orbit. Indeed, as was suggested to me by Robert MacKay, StdMap uses a structure, ifnumber, for x containing a long and double for the integer and fractional parts.

  36. R S MacKay, Phys. Lett. A106, 99 (1984)

    ADS  MathSciNet  Google Scholar 

  37. A Wurm, A Apte, K Fuchss and P Morrison, Chaos 15, 023108 (2005)

    Google Scholar 

  38. When k < 0 the dominant line for (1) is Fix(S 3). Other reversible maps, like the Hénon map, ⌘-2, also appear to have dominant symmetry lines, though as far as I know this has not been proved.

  39. R S MacKay and J D Meiss, Phys. Lett. A98, 92 (1983)

    ADS  MathSciNet  Google Scholar 

  40. B V Chirikov, Phys. Rep. 52, 265 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  41. Near, e.g., (0.306, 0.612) when k = 1.5.

  42. C F F K Karney, Physica D8, 360 (1983)

    ADS  MathSciNet  Google Scholar 

  43. J D Hanson, J R Cary and J D Meiss, J. Stat. Phys. 39(3–4), 327 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. The time grows as t trans ∼ 75(kk cr)−3.01 R S MacKay, J D Meiss and I C Percival, Physica D13, 55 (1984)[45].

    ADS  MathSciNet  Google Scholar 

  45. R S MacKay, J D Meiss and I C Percival, Physica D13, 55 (1984)

    ADS  MathSciNet  Google Scholar 

  46. J M Greene, J. Math. Phys. 20, 1183 (1979)

    Article  ADS  Google Scholar 

  47. J M Greene, The calculation of KAM surfaces, in: Nonlinear Dynamics (Ann. New York Acad. Sci., New York, 1980) vol. 357, pp. 80–89

    Google Scholar 

  48. R S MacKay, Renormalisation in Area-Preserving Maps, volume 6 of Adv. Series in Nonlinear Dynamics (World Scientific, Singapore, 1993)

    Google Scholar 

  49. J N Mather, J. Am. Math. Soc. 4(2), 207 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  50. R S MacKay, Nonlinearity 5, 161 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. A Delshams and R De La Llave, SIAM J. Math. Anal. 31(6), 1235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. G Schmidt and J Bialek, Physica D5, 397 (1982)

    ADS  MathSciNet  Google Scholar 

  53. N Buric, I C Percival and F Vivaldi, Nonlinearity 3, 21 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. R S MacKay and J Stark, Nonlinearity 5, 867 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. J N Mather, Topology 21, 457 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  56. It would be best, of course, for me to add a parser to StdMap so that arbitrary maps could be iterated. However, much of the code depends upon the reversibility assumption, so this would not be easy.

  57. K R Meyer and G R Hall, Introduction to the Theory of Hamiltonian Systems, volume 90 of Applied Mathematical Sciences (Springer-Verlag, New York, 1992)

    Google Scholar 

  58. R W Easton, Geometric Methods for Discrete Dynamical Systems (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  59. C Golé, Symplectic Twist Maps: Global Variational Techniques, volume 18 of Advanced Series in Nonlinear Dynamics (World Scientific, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Meiss.

Additional information

Dedicated to the memory of John Greene. His ideas are as timeless as his generosity is legendary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiss, J.D. Visual explorations of dynamics: The standard map. Pramana - J Phys 70, 965–988 (2008). https://doi.org/10.1007/s12043-008-0103-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0103-3

Keywords

PACS Nos

Navigation