Skip to main content
Log in

Parametric optimum analysis of an irreversible Ericsson cryogenic refrigeration cycle working with an ideal Fermi gas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

An irreversible model of an Ericsson cryogenic refrigeration cycle working with an ideal Fermi gas is established, which is composed of two isothermal and two isobaric processes. The influence of both the quantum degeneracy and the finite-rate heat transfer between the working fluid and the heat reservoirs on the performance of the cycle is investigated, based on the theory of statistical mechanics and thermodynamic properties of an ideal Fermi gas. The inherent regeneration losses of the cycle are analyzed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. Especially, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit is discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Ericsson refrigeration cycles working with the Fermi and classical gases are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y Zhang, B Lin and J Chen, Phys. Scr. 73, 28 (2006)

    ADS  Google Scholar 

  2. J He, W Ouyang and X Wu, Chin. Phys. 15, 53 (2006)

    Article  ADS  Google Scholar 

  3. B Lin and J Chen, Chin. Phys. 14, 293 (2005)

    Article  ADS  Google Scholar 

  4. T E Humphrey and H Linke, Phys. Rev. Lett. 94, 096601 (2005)

    Google Scholar 

  5. J He, Z Mao and J Wang, Chin. Phys. 15, 1953 (2006)

    Article  ADS  Google Scholar 

  6. B Lin and J Chen, J. Phys. A38, 69 (2005)

    MathSciNet  ADS  Google Scholar 

  7. T E Humphrey and H Linke, Physica E29, 390 (2005)

    ADS  Google Scholar 

  8. N Sanchez-Salas and A C Hernandez, Phys. Rev. E70, 046110 (2004)

    Google Scholar 

  9. T D Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Google Scholar 

  10. B Lin and J Chen, Phys. Rev. E68, 056117 (2003)

  11. P W Milonni, Phys. World 16, 22 (2003)

    ADS  Google Scholar 

  12. B Lin and J Chen, Phys. Rev. E67, 046105 (2003)

  13. J He, J Chen and B Hua, Phys. Rev. E65, 036145 (2002)

  14. E Geva, J. Mod. Opt. 49, 635 (2002)

    Article  ADS  Google Scholar 

  15. H Saygin and A Sisman, J. Appl. Phys. 90, 3086 (2001)

    Article  ADS  Google Scholar 

  16. J P Palao, R Kosloff and J M Gordon, Phys. Rev. E64, 056130 (2001)

    Google Scholar 

  17. T Feldmann and R Kosloff, Phys. Rev. E61, 4774 (2000)

    ADS  Google Scholar 

  18. A Sisman and H Saygin, Phys. Scr. 63, 263 (2001)

    Article  ADS  Google Scholar 

  19. A Sisman and H Saygin, J. Phys. D32, 664 (1999)

    ADS  Google Scholar 

  20. P K Pathria, Statistical mechanics 2nd edition (Elsevier Pvt Ltd, Singapore, 1996)

    MATH  Google Scholar 

  21. K Huang, Statistical mechanics 2nd edition (Wiley, New York, 1987)

    MATH  Google Scholar 

  22. L D Landau and E M Lifshitz, Statistical physics (Pergamon, London, 1958)

    MATH  Google Scholar 

  23. J He, J Chen and B Hua, Appl. Energy 72, 541 (2002)

    Article  Google Scholar 

  24. B Lin, Y Zhang and J Chen, Appl. Energy 83, 513 (2006)

    Article  Google Scholar 

  25. J Chen and Z Yan, Phys. Rev. A39, 4140 (1989)

    MathSciNet  ADS  Google Scholar 

  26. J Chen and Z Yan, J. Appl. Phys. 84, 1791 (1998)

    Article  ADS  Google Scholar 

  27. J Chen, J He and B Hua, J. Phys. A35, 7995 (2002)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bihong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, B., Zhao, Y. & Chen, J. Parametric optimum analysis of an irreversible Ericsson cryogenic refrigeration cycle working with an ideal Fermi gas. Pramana - J Phys 70, 779–795 (2008). https://doi.org/10.1007/s12043-008-0089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0089-x

Keywords

PACS Nos

Navigation