Skip to main content
Log in

Effects of charged Higgs bosons in the deep inelastic process ν τ Nτ X and the possibility of detecting tau-neutrinos at cosmic neutrino detectors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study the deep inelastic process ν τ + Nτ + X (with N ≡ (n + p)/2 an isoscalar nucleon), in the context of the two-Higgs doublet model Type II (2HDM(II)). We discuss the contribution to the total cross-section of diagrams, in which a charged Higgs boson is exchanged. We present results which show strong dependence of such contributions on tan β and M H ±. We show that for tan β ≈ 150 and M H ± ≈ 300 GeV, the contribution of the charged Higgs boson exchange diagrams to the cross-section of the charged current inclusive ν τ N collision can become important. We find that this contribution for an inclusive dispersion generated through the collision of an ultra-high-energy tau-neutrino with E ν ≈ 1021 eV on a target nucleon can be as large as 40% of the value of the contribution of the W ± exchange diagrams, provided M H ± ≈ 300 GeV and tan β ≈ 150. Such enhancement and the induced variation on the mean inelasticity 〈yCC could lead to sizeable effects in the acceptance of cosmic tau-neutrino detectors at experiments such as HiRes, PAO, and the CRTNT, which are anchored to the ground, and at experiments such as EUSO and OWL, which are proposed to orbit around the Earth. We also compare the contribution to σ tot H+ from the different allowed initial quarks and we show that the contribution from the bottom quark dominates by far. This means that the H ± contribution practically always gives a top quark in the final state. Such a large component of the cross-section having a top quark event in the final state could have recognizable features in the EAS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S L Glashow, Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  2. S Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  3. A Salam, Proc. 8th NOBEL Symposium edited by N Svartholm (Almqvist and Wiksell, Stockholm, 1968) p. 367

    Google Scholar 

  4. J Gunion, H Haber, G Kane and S Dawson, The Higgs hunter’s guide (Addison-Wesley Publishing Company, Reading, MA, 1990)

    Google Scholar 

  5. H E Haber, in Testing the Standard Model, Proceedings of the 1990 Theoretical Advanced Study Institute in Elementary Particle Physics edited by M Cvetic and P Langacker (World Scientific, Singapore, 1991) pp. 340–475

    Google Scholar 

  6. For a recent study of the 2HDM, see: E Accomando et al, arXiv:hep-ph/0608079

  7. V D Barger, J L Hewett and R J N Phillips, Phys. Rev. D41, 3421 (1990)

    ADS  Google Scholar 

  8. T D Lee, Phys. Rev. D8, 1226 (1973)

    ADS  Google Scholar 

  9. T D Lee, Phys. Rep. 9, 143 (1974)

    Article  ADS  Google Scholar 

  10. S Weinberg, Phys. Rev. Lett. 37, 657 (1976)

    Article  ADS  Google Scholar 

  11. Y L Wu and L Wolfenstein, Phys. Rev. Lett. 73, 1762 (1994), arXiv:hep-ph/9409421

    Article  ADS  Google Scholar 

  12. J Liu and L Wolfenstein, Nucl. Phys. B289, 1 (1987)

    Article  ADS  Google Scholar 

  13. ALEPH Collaboration: A Heister et al, Phys. Lett. B543, 1 (2002), arXiv:hep-ex/0207054

    ADS  Google Scholar 

  14. OPAL Collaboration: K Ackerstaff et al, Euro. Phys. J. C8, 3 (1999), arXiv:hep-ex/9808016

    Article  ADS  Google Scholar 

  15. OPAL Collaboration: G Abbiendi et al., Phys. Lett. B551, 35 (2003), arXiv:hep-ex/0211066

    ADS  Google Scholar 

  16. OPAL Collaboration: G Abbiendi et al, Phys. Lett. B520, 1 (2001), arXiv:hep-ex/0108031

    ADS  Google Scholar 

  17. CLEO Collaboration: R Ammar et al, Phys. Rev. Lett. 78, 4686 (1997)

    Article  ADS  Google Scholar 

  18. A Stahl and H Voss, Z. Phys. C74, 73 (1997)

    Google Scholar 

  19. ALEPH Collaboration: D Buskulic et al, Phys. Lett. B343, 444 (1995)

    ADS  Google Scholar 

  20. ALEPH Collaboration: R Barate et al, Euro. Phys. J. C19, 213 (2001), arXiv:hep-ex/0010022

    ADS  Google Scholar 

  21. L3 Collaboration: M Acciarri et al, Phys. Lett. B396, 327 (1997)

    ADS  Google Scholar 

  22. Belle Collaboration: K Abe et al, arXiv:hep-ex/0507034

  23. M Misiak et al, Phys. Rev. Lett. 98, 022002 (2007), arXiv:hep-ph/0609232

    Google Scholar 

  24. D P Roy, AIP Conf. Proc. 805, 110 (2006), arXiv:hep-ph/0510070

    Article  ADS  Google Scholar 

  25. H Baer, J Ferrandis and X Tata, Phys. Lett. B561, 145 (2003), arXiv:hep-ph/0211418

    ADS  Google Scholar 

  26. AMANDA Collaboration: E Andres et al, Nature 410, 441 (2001)

    Article  ADS  Google Scholar 

  27. ANTARES Collaboration: Y Becherini et al, e-Print Archive: hep-ph/0211173

  28. AUGER Collaboration: D Zavrtanik et al, Nucl. Phys. Proc. Suppl. 85, 324 (2002)

    Article  ADS  Google Scholar 

  29. NESTOR Collaboration: P K F Grieder et al, Nuovo Cimento C24, 771 (2001)

    ADS  Google Scholar 

  30. RICE Collaboration: I Kravchenko et al, Astropart. Phys. 19, 15 (2003)

    Article  ADS  Google Scholar 

  31. V S Beresinsky and G T Zatsepin, Phys. Lett. B28, 423 (1969)

    ADS  Google Scholar 

  32. V S Berezinsky and V I Dokuchaev, Nucl. Phys. Proc. Suppl. 110, 522 (2002)

    ADS  Google Scholar 

  33. V S Berezinsky, Nucl. Phys. Proc. Suppl. 38, 363 (1995); 31, 413 (1993)

    Article  ADS  Google Scholar 

  34. T Stanev, Nucl. Phys. Proc. Suppl. A14, 17 (1990)

    Article  ADS  Google Scholar 

  35. K Greisen, Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  36. C T Hill and D N Schramm, Phys. Lett. B131, 247 (1983); Phys. Rev. D31, 564 (1985)

    ADS  Google Scholar 

  37. R Gandhi, C Quigg, M H Reno and I Sarcevic, Phys. Rev. D58, 093009 (1998), arXiv:hep-ph/9807264

  38. O Blanch and P Billoir, Acceptance and flux limit for v τ with the Pierre Auger Observatory Surface Detector, preprint LPNHE (Paris, France, September 26, 2005)

  39. X Bertou, P Billoir, O Deligny, C Lachaud and A Letessier-Selvon, Astropart. Phys. 17, 183 (2002); arXiv:astro-ph/0104452

    Article  ADS  Google Scholar 

  40. R P Feynman, Photon-hadron interactions (Reading, Benjamin, 1972)

  41. V D Barger and R J N Phillips, Collider physics (updated edition) (Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1997)

    Google Scholar 

  42. J Pumplin et al, J. High Energy Phys. 207, 12 (2002)

    Article  ADS  Google Scholar 

  43. D Stump et al, e-Print Archive: hep-ph/0303013

  44. E Byckling and K Kajantie, Particle kinematics (Wiley, New York, 1972)

    Google Scholar 

  45. M H Reno and C Quigg, Phys. Rev. D37, 657 (1988)

    ADS  Google Scholar 

  46. C Quigg, M H Reno and T P Walker, Phys. Rev. Lett. 57, 774 (1986)

    Article  ADS  Google Scholar 

  47. A Rosado, Phys. Rev. D74, 057301 (2006)

  48. Particle Data Group: S Eidelman et al, Phys. Lett. B592, 1 (2004)

    ADS  Google Scholar 

  49. S Palomares-Ruiz, A Irimia and T J Weiler, Phys. Rev. D73, 083003 (2006), arXiv:astro-ph/0512231

  50. The HiRes Collaboration: P Sokolsky and J Belz, Comparison of UHE composition measurements by Fly’s Eye, HiRes-prototype/MIA and stereo HiRes experiments, arXiv:astro-ph/0507485

  51. Auger Collaboration: H Blumer et al, The Auger fluorescence detector prototype telescope, FZKA-6345P, Prepared for 26th International Cosmic Ray Conference (ICRC 99), Salt Lake City, UT, 17–25 Aug. 1999

  52. Pierre Auger Collaboration: J Abraham et al, Nucl. Instrum. Methods A523, 50 (2004)

    ADS  Google Scholar 

  53. Z Cao, Nucl. Phys. Proc. Suppl. 151, 287 (2006)

    Article  ADS  Google Scholar 

  54. The EUSO Collaboration: Ph Gorodetzky, Nucl. Phys. Proc. Suppl. 151, 401 (2006), arXiv:astro-ph/0502187

    Article  ADS  Google Scholar 

  55. EUSO Collaboration: G D’Ali Staiti, Nucl. Phys. Proc. Suppl. 136, 415 (2004)

    Article  Google Scholar 

  56. F W Stecker, J F Krizmanic, L M Barbier, E Loh, J W Mitchell, P Sokolsky and R E Streitmatter, Nucl. Phys. Proc. Suppl. C136, 433 (2004), arXiv:astro-ph/0408162

    Article  ADS  Google Scholar 

  57. E Zas, New J. Phys. 7, 130 (2005), arXiv:astro-ph/0504610

    Article  ADS  Google Scholar 

  58. R Gandhi, C Quigg, M H Reno and I Sarcevic, Astropart. Phys. 5, 81 (1996), arXiv:hep-ph/9512364

    Article  ADS  Google Scholar 

  59. J C Arteaga-Velazquez and A Zepeda, Estimation of the detectable flux of astrophysical neutrinos at the Pierre Auger Observatory by means of horizontal air showers, Proceedings of 29th International Cosmic Ray Conference, Pune, 2005, vol. 9, pp. 151–154

  60. C Aramo, A Insolia, A Leonardi, G Miele, L Perrone, O Pisanti and D V Semikoz, Astropart. Phys. 23, 65 (2005), arXiv:astro-ph/0407638

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedraza-Morales, M.I., Rosado, A. & Salazar, H. Effects of charged Higgs bosons in the deep inelastic process ν τ Nτ X and the possibility of detecting tau-neutrinos at cosmic neutrino detectors. Pramana - J Phys 70, 603–615 (2008). https://doi.org/10.1007/s12043-008-0022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0022-3

Keywords

PACS Nos

Navigation