Skip to main content
Log in

Perfect fluid bianchi Type-I cosmological models with time varying G and Λ

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Bianchi Type-I cosmological models containing perfect fluid with time varying G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λ i. Of the two models obtained, one has negative vacuum energy density, which decays numerically. In this model, we obtain Λ ∼ H 2, Λ ∼ R 44/R and Λ ∼ T −2 (T is the cosmic time) which is in accordance with the main dynamical laws for the decay of Λ. The second model reduces to a static solution with repulsive gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A G Riess et al, Astron. J. 116, 1099 (1998)

    Article  Google Scholar 

  2. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. S Perlmutter et al, Nature (London) 391, 51 (1998)

    Article  ADS  Google Scholar 

  4. J P Ostriker and P J Steinhardt, Nature (London) 377, 600 (1995)

    Article  ADS  Google Scholar 

  5. S Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. S Weinberg, astro-ph/0005265

  7. M Gasperini, Class Quantum Gravit. 5, 521 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. M Ozer and M O Taha, Nucl. Phys. B287, 776 (1987)

    Article  ADS  Google Scholar 

  9. K Freese et al, Nucl. Phys. B287, 797 (1987)

    Article  ADS  Google Scholar 

  10. J A Frieman et al, Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  11. K Coble, S Dodelson and J A Frieman, Phys. Rev. D55, 1851 (1997)

    ADS  Google Scholar 

  12. P A M Dirac, Proc. R. Soc. London A165, 199 (1938)

    ADS  Google Scholar 

  13. A-M M Abdel-Rahman, Nuovo Cimento B102, 225 (1988)

    ADS  Google Scholar 

  14. A-M M Abdel-Rahman, Phys. Rev. D45, 3497 (1992)

    ADS  Google Scholar 

  15. J D Barrow, Phys. Lett. B180, 335 (1986)

    ADS  MathSciNet  Google Scholar 

  16. J D Barrow and P Parsons, Phys. Rev. D55, 1906 (1997)

    ADS  Google Scholar 

  17. A Beesham, Gen. Relativ. Gravit. 26, 159 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. M S Berman, Phys. Rev. D43, 1075 (1991)

    ADS  Google Scholar 

  19. J C Carvalho, J A S Lima and I Waga, Phys. Rev. D46, 2404 (1992)

    ADS  Google Scholar 

  20. W Chen and Y S Wu, Phys. Rev. D41, 695 (1990)

    ADS  Google Scholar 

  21. D Kalligas, P S Wesson and C W F Everitt, Gen. Relativ. Gravit. 24, 351 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. D Kalligas, P S Wesson and C W F Everitt, Gen. Relativ. Gravit. 27, 645 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Y K Lau, Aust. J. Phys. 38, 547 (1985)

    ADS  Google Scholar 

  24. Y K Lau and S J Prokhovnik, Aust. J. Phys. 39, 339 (1986)

    ADS  Google Scholar 

  25. J A S Lima and M Trodden, Phys. Rev. D53, 4280 (1996)

    ADS  Google Scholar 

  26. J A S Lima and J M F Maia, Phys. Rev. D49, 5597 (1994)

    ADS  Google Scholar 

  27. Bijan Saha, Int. J. Theor. Phys. 45, 983 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bijan Saha, Astrophys. Space Sci. 302, 83 (2006)

    Article  MATH  ADS  Google Scholar 

  29. A Pradhan and P Pandey, Astrophys. Space Sci. 301, 221 (2006)

    Article  Google Scholar 

  30. A Pradhan and S K Singh, Int. J. Mod. Phys. D13, 503 (2004)

    ADS  MathSciNet  Google Scholar 

  31. O Bertolami, Nuovo Cimento B93, 36 (1986)

    ADS  Google Scholar 

  32. C W Misner, Ap. J. 151, 431 (1968)

    Article  ADS  Google Scholar 

  33. W Huang, J. Math. Phys. 31, 1456 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. L P Chimento et al, Class. Quantum Gravit. 14, 3363 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. S R Roy, S Narain and J P Singh, Aust. J. Phys. 38, 239 (1985)

    ADS  MathSciNet  Google Scholar 

  36. R G Vishwakarma, Gen. Relativ. Gravit. 37, 1305 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. L M Salim and I Waga, Class. Quantum Gravit. 10, 1767 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  38. A I Arbab and A-M M Abdel-Rahman, Phys. Rev. D50, 7725 (1994)

    ADS  Google Scholar 

  39. C Wetterich, Astron. Astrophys. 301, 321 (1995)

    ADS  Google Scholar 

  40. A I Arbab, Gen. Relativ. Gravit. 29, 61 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  41. R G Vishwakarma, Class. Quantum Gravit. 18, 1159 (2001)

    Article  MATH  ADS  Google Scholar 

  42. M S Berman and M M Som, Int. J. Theor. Phys. 29, 1411 (1990)

    Article  MathSciNet  Google Scholar 

  43. A I Arbab, Class. Quantum Gravit. 20, 93 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. M S Berman, Int. J. Theor. Phys. 29, 571 (1990)

    Article  MATH  Google Scholar 

  45. B M S Hansen et al, Astrophys. J. 574, L155 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.P., Tiwari, R.K. Perfect fluid bianchi Type-I cosmological models with time varying G and Λ. Pramana - J Phys 70, 565–574 (2008). https://doi.org/10.1007/s12043-008-0019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0019-y

Keywords

PACS No.

Navigation