Skip to main content
Log in

Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effect of environmental temperature on neuronal spiking behaviors is investigated by numerically simulating the temperature dependence of spiking threshold of the Hodgkin-Huxley neuron subject to synaptic stimulus. We find that the spiking threshold exhibits a global minimum in a specific temperature range where spike initiation needs weakest synaptic strength, which form the engineering perspective indicates the occurrence of optimal use of synaptic transmission in the nervous system. We further explore the biophysical origin of this phenomenon associated with ion channel gating kinetics and also discuss its possible biological relevance in information processing in neuronal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M I Rabinovich, P Varona, A I Selverston and H D I Abarbanel, Rev. Mod. Phys. 78, 1213 (2006)

    Article  ADS  Google Scholar 

  2. J Feng and H C Tuckwell, Phys. Rev. Lett. 91, 018101 (2003)

    Google Scholar 

  3. V A Makarov, V I Nekorkin and M G Velarde, Phys. Rev. Lett. 86, 003431 (2001)

  4. A L Hodgkin, A F Huxley and B Katz, J. Physiol. 116, 424 (1952)

    Google Scholar 

  5. J S Schweitzer, H Wang, Z Xiong and J L Stringer, J. Neurophysiol. 84, 927 (2000)

    Google Scholar 

  6. V Y Vasilenko, E M Belyavskii and V N Gurin, Neurophysiol. 21, 259 (1989)

    Article  Google Scholar 

  7. J D Miller, V H Cao and H C Heller, Am. J. Physiol. Regul. Integr. Comp. Physiol. 266, 1259 (1994)

    Google Scholar 

  8. H Xu and R M Robertson, J. Comp. Physiol. A175, 193 (1994)

    Article  Google Scholar 

  9. M Radmilovich, A Fernández and O Trujillo-Cenóz, J. Exp. Biol. 206, 3085 (2003)

    Article  Google Scholar 

  10. J W Moore, Fed. Proc. 17, 113 (1958)

    Google Scholar 

  11. X Cao and D Oertel, J. Neurophysiol. 94, 821 (2005)

    Article  Google Scholar 

  12. A L Hodgkin and A F Huxley, J. Physiol. 117, 500 (1952)

    Google Scholar 

  13. F Bezanilla and R E Taylor, Biophys. J. 23, 479 (1978)

    Google Scholar 

  14. Y Zhao and J A Boulant, J. Physiol. 564, 245 (2005)

    Article  Google Scholar 

  15. A L Hodgkin and B Katz, J. Physiol. 108, 37 (1949)

    Google Scholar 

  16. J J C Rosenthal and F Bezanilla, J. Exp. Biol. 205, 1819 (2002)

    Google Scholar 

  17. M Volgushev, T R Vidyasagar, M Chistiakova, T Yousef and U T Eysel, J. Physiol. 522, 59 (2000)

    Article  Google Scholar 

  18. A F Huxley, Ann. New York Acad. Sci. 81, 221 (1959)

    Article  ADS  Google Scholar 

  19. F Rieke, D Warland, R R Steveninck and W Bialek, Spikes: Exploring the neural code (MIT Press, 1997), p. 395

  20. A V Holden, Nature (London) 428, 382 (2004)

    Article  ADS  Google Scholar 

  21. M J Chacron, B Lindner and A Longtin, Phys. Rev. Lett. 92, 080601 (2004)

    Google Scholar 

  22. R VanRullen, R Guyonneau and S J Thorpe, Trends Neurosci. 28, 1 (2005)

    Article  Google Scholar 

  23. R A Sjodin and L J Mullins, J. Gen. Physiol. 42, 39 (1958)

    Article  Google Scholar 

  24. R Guttman and B Sandler, J. Gen. Physiol. 46, 257 (1962)

    Article  Google Scholar 

  25. Y Yu, W Wang, J Wang and F Liu, Phys. Rev. E63, 021907 (2001).

  26. S Kuang, J Wang and T Zeng, Chin. Phys. Lett. 23, 3380 (2006)

    Article  ADS  Google Scholar 

  27. R Guttman and R Barnhill, J. Gen. Physiol. 49, 1007 (1966)

    Article  Google Scholar 

  28. R FitzHugh, Biophys. J. 2, 11 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  29. R FitzHugh, J. Gen. Physiol. 49, 989 (1966)

    Article  Google Scholar 

  30. C Koch, Biophysics of computation: Information processing in single neurons (Oxford University Press, 1999), p. 562

  31. J S Rothman and P B Manis, J. Neurophysiol. 89, 3097 (2003)

    Article  Google Scholar 

  32. T Zeng, J Wang and S Kuang, Influence of temperature on neuronal excitability in cochlear nucleus, submitted to Phys. Lett. A (also available on arXiv:q-bio/0702013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenbing Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, S., Wang, J., Zeng, T. et al. Thermal impact on spiking properties in Hodgkin-Huxley neuron with synaptic stimulus. Pramana - J Phys 70, 183–190 (2008). https://doi.org/10.1007/s12043-008-0016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0016-1

Keywords

PACS Nos

Navigation