Skip to main content
Log in

Fission decay properties of ultra neutron-rich uranium isotopes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number N = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with N = 154–172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of N = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving r-process nucleosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)

    Article  ADS  Google Scholar 

  2. W Nazarewicz, Nucl. Phys. A630, 239c (1998)

    ADS  Google Scholar 

  3. P G Hansen, Nucl. Phys. A630, 285c (1998)

    ADS  Google Scholar 

  4. K Rykaczewski, R Grzywacz, M Lewitowicz and M Pfutzner, Nucl. Phys. A630, 307c (1998)

    ADS  Google Scholar 

  5. W M Howard and P Möller, At. Data Nucl. Data Tables 25, 219 (1980)

    Article  ADS  Google Scholar 

  6. S Cwiok, J Dobaczewski, P-H Heenen, P Magierski and W Nazarewicz, Nucl. Phys. A611, 211 (1996)

    ADS  Google Scholar 

  7. Z Patyk and A Sobiczewski, Nucl. Phys. A533, 132 (1991)

    ADS  Google Scholar 

  8. P Möller and J R Nix, At. Data Nucl. Data Tables 39, 213 (1988)

    Article  ADS  Google Scholar 

  9. G Münzenberg and S Hofmann, Heavy elements and related new phenomena edited by W Greiner and R K Gupta (World Scientific, 1999), Ch. 1, p. 9

  10. Yu Ts Oganessian, Heavy elements and related new phenomena edited by W Greiner and R K Gupta (World Scientific, 1999) Ch. 2, p. 43

  11. P Möller, R J Nix, W D Myers and W J Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  12. P Möller, R J Nix and K-L Kratz, At. Data Nucl. Data Tables 66, 131 (1997)

    Article  ADS  Google Scholar 

  13. G Audi, A H Wapstra and C Thibault, Nucl. Phys. A729, 337 (2003)

    ADS  Google Scholar 

  14. M S Samant, R P Anand, R K Choudhury, S S Kapoor and D M Nadkarni, Phys. Rev. C51, 3127 (1995)

    ADS  Google Scholar 

  15. M S Samant, R P Anand, R K Choudhury, S S Kapoor, K Kumar, D M Nadkarni and A Saxena, Pramana — J. Phys. 40, 299 (1993)

    ADS  Google Scholar 

  16. R G Thomas et al, Phys. Rev. C75, 024604 (2007)

  17. B S Meyer, W M Howard, G J Mathews, K Takahashi, P Möller and G A Leander, Phys. Rev. C39, 1876 (1989)

    ADS  Google Scholar 

  18. M Del Estal, M Centelles, X Viñas and S K Patra, Phys. Rev. C63, 024314 (2001); Phys. Rev. C63, 044321 (2001)

  19. T Sil, S K Patra, B K Sharma, M Centelles and X Viñas, Phys. Rev. C69, 044315 (2004)

  20. R Vandenbosch and J R Huizenga, Nuclear fission (Academic Press, inc., USA, 1973) Ch. III, p. 45

    Google Scholar 

  21. N E Holden and D C Hoffman, Pure Appl. Chem. 72, 1525 (2000)

    Article  Google Scholar 

  22. P Madler, Z. Phys. A321, 343 (1985)

    Google Scholar 

  23. S K Patra, M Del Estal, M Centelles and X Viñas, Phys. Rev. C63, 024311 (2001)

    Google Scholar 

  24. C J Horowitz and B D Serot, Nucl. Phys. A368, 503 (1981)

    ADS  Google Scholar 

  25. G A Lalazissis, J König and P Ring, Phys. Rev. C55, 540 (1997)

    ADS  Google Scholar 

  26. R C Nayak and L Satpathy, At. Data Nucl. Data Tables 73, 213 (1999)

    Article  ADS  Google Scholar 

  27. L Satpathy, J. Phys. G13, 761 (1987)

    ADS  Google Scholar 

  28. R C Nayak, V S Uma Maheswari and L Satpathy, Phys. Rev. C52, 711 (1995)

    ADS  Google Scholar 

  29. L Satpathy, V S Uma Maheswari and R C Nayak, Phys. Rep. 319, 85 (1999)

    Article  Google Scholar 

  30. L Satpathy and R C Nayak, J. Phys. G24, 1527 (1998)

    ADS  Google Scholar 

  31. L Satpathy and S K Patra, J. Phys. G30, 771 (2004); Nature News India (October 2004)

    ADS  Google Scholar 

  32. L Satpathy and S K Patra, Nucl. Phys. A722, 24c (2003)

    ADS  Google Scholar 

  33. P Arumugam, B K Sharma, S K Patra and Raj K Gupta, Phys. Rev. C71, 064308 (2005)

  34. B K Sharma, P Arumugam, S K Patra, P D Stevenson, Raj K Gupta and W Greiner, J. Phys. G32, L1 (2006)

    ADS  Google Scholar 

  35. Raj K Gupta, S K Patra, P D Stevenson and Walter Greiner, Int. J. Mod. Phys. E16, 1721 (2007)

    ADS  Google Scholar 

  36. B D Serot and J D Walecka, Adv. Nucl. Phys. 16, 1 (1986)

    Google Scholar 

  37. Y K Gambhir, P Ring and A Thimet, Ann. Phys. (N.Y.) 198, 132 (1990)

    Article  ADS  Google Scholar 

  38. Y Sugahara and H Toki, Nucl. Phys. A579, 557 (1994)

    ADS  Google Scholar 

  39. S Gmuca, Nucl. Phys. A547, 447 (1992)

    ADS  Google Scholar 

  40. P K Panda, S K Patra, J Reinhardt, J A Maruhn, H Stöcker and W Greiner, Int. J. Mod. Phys. E6, 307 (1997)

    ADS  Google Scholar 

  41. D G Madland and R J Nix, Nucl. Phys. A476, 1 (1988)

    ADS  Google Scholar 

  42. S K Patra, C-L Wu, C R Praharaj and R K Gupta, Nucl. Phys. A651, 117 (1999)

    ADS  Google Scholar 

  43. M K Pal, Nucl. Phys. A556, 201 (1993)

    ADS  Google Scholar 

  44. M Bender, P-H Heenen and P-G Reinhard, Rev. Mod. Phys. 75, 121 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Choudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satpathy, L., Patra, S.K. & Choudhury, R.K. Fission decay properties of ultra neutron-rich uranium isotopes. Pramana - J Phys 70, 87–99 (2008). https://doi.org/10.1007/s12043-008-0007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0007-2

Keywords

PACS Nos

Navigation