Skip to main content
Log in

String theory and cosmological singularities

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In general relativity space-like or null singularities are common: they imply that ‘time’ can have a beginning or end. Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics. In this article, we describe some of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Das, Mod. Phys. Lett. A20, 2101 (2005)

    ADS  Google Scholar 

  2. B. Craps, Big Bang models in string theory, arXiv:hep-th/0605199

  3. M Gasperini and G. Veneziano, Phys. Rep. 373, 1 (2003), arXiv:hep-th/0207130

    Article  ADS  Google Scholar 

  4. H Liu, G W Moore and N Seiberg, The challenging cosmic singularity, arXiv:gr-qc/0301001

  5. E Silverstein, Singularities and closed string tachyons, arXiv:hep-th/0602230

  6. Sidney Coleman, 1/N, Proceedings of the 1979 International School of Subnuclear Physics (1979) 0011

  7. Standard textbooks on String theory include [8] and [9]

  8. M Green, J Schwarz and E Witten, Superstring theory (Cambridge University Press, 1987) vols 1 and 2

  9. J Polchinski, String theory (Cambridge University Press, 1998) vols 1 and 2

  10. I R Klebanov, String theory in two-dimensions, arXiv:hep-th/9108019

  11. S R Das, The one-dimensional matrix model and string theory, arXiv:hep-th/9211085

  12. E J Martinec, Matrix models and 2D string theory, arXiv:hep-th/0410136

  13. A Sen, An introduction to non-perturbative string theory, arXiv:hep-th/9802051

  14. C V Johnson, D-brane primer, arXiv:hep-th/0007170

  15. S R Das and S D Mathur, Ann. Rev. Nucl. Part Sci. 50, 153 (2000), arXiv:gr-qc/0105063

    Article  ADS  Google Scholar 

  16. J R David, G Mandal and S R Wadia, Phys. Rep. 369, 549 (2002), arXiv:hep-th/0203048

    Article  MATH  ADS  Google Scholar 

  17. O Aharony, S S Gubser, J M Maldacena, H Ooguri and Y Oz, Phys. Rep. 323, 183 (2000), arXiv:hep-th/9905111

    Article  Google Scholar 

  18. V Balasubramanian, E G Gimon and D Minic, J. High Energy Phys. 0005, 014 (2000), arXiv:hep-th/0003147

    Article  ADS  Google Scholar 

  19. R Bousso, Rev. Mod. Phys. 74, 825 (2002), arXiv:hep-th/0203101

    Article  ADS  Google Scholar 

  20. W Taylor, Rev. Mod. Phys. 73, 419 (2001), arXiv:hep-th/0101126

    Article  ADS  Google Scholar 

  21. H Aoki, S Iso, H Kawai, Y Kitazawa, A Tsuchiya and T Tada, Prog. Theor. Phys. Suppl. 134, 47 (1999), arXiv:hep-th/9908038

    Article  ADS  Google Scholar 

  22. F Hacquebord, Symmetries and interactions in matrix string theory, arXiv:hep-th/9909227

  23. B Craps, S Sethi and E P Verlinde, J. High Energy Phys. 0510, 005 (2005), arXiv:hep-th/0506180

    Article  ADS  Google Scholar 

  24. S R Das and J Michelson, Phys. Rev. D72, 086005 (2005), arXiv:hep-th/0508068

  25. S R Das and J Michelson, Matrix membrane Big Bangs and D-brane production, arXiv:hep-th/0602099

  26. S R Das, J Michelson, K Narayan and S P Trivedi, arXiv:hep-th/0602107

  27. C S Chu and P M Ho, J. High Energy Phys. 0604, 013 (2006), arXiv:hep-th/0602054

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.R. String theory and cosmological singularities. Pramana - J Phys 69, 93–108 (2007). https://doi.org/10.1007/s12043-007-0112-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0112-7

Keywords

PACS Nos

Navigation