Skip to main content
Log in

Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan β and m A . We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W-M Yao et al (Review of Particle Properties), J. Phys. G33, 1 (2006)

    ADS  Google Scholar 

  2. ALEPH, DELPHI, L3 and OPAL Collaborations and the LEP Working Group for Higgs Boson Searches: Phys. Lett. B565, 61 (2003)

    Google Scholar 

  3. J Erler and P Langacker, in ref. [1], section 10

    Google Scholar 

  4. T Abe et al, Linear collider physics resource book for snowmass 2001 Part 2: Higgs and supersymmetry studies, hep-ex/0106056 (2001)

  5. V Barger, M S Berger, J F Gunion and T Han, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001) edited by R Davidson and C Quigg [hep-ph/0110340]

  6. For reviews, see, M Carena and H E Haber, Prog. Part. Nucl. Phys. 50, 63 (2003)

    Article  ADS  Google Scholar 

  7. J F Gunion, H E Haber, G Kane and S Dawson, The Higgs Hunters Guide (Addison-Wesley, Readwood City, California, 1990)

    Google Scholar 

  8. M S Berger, Phys. Rev. D41, 225 (1990)

    ADS  Google Scholar 

  9. H E Haber and R Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  10. Y Okada, M Yamaguchi and T Yanagida, Prog. Theor. Phys. 85, 1 (1991)

    Article  ADS  Google Scholar 

  11. J Ellis, G Ridolfi and F Zwirner, Phys. Lett. B257, 83 (1991)

    ADS  Google Scholar 

  12. One of the effects of radiative corrections to Higgs sector of the MSSM is the modification of the upper bound of lightest CP-even Higgs boson mass, as noted in ref. [7]. The radiative corrections have been computed by a number of techniques and a variety of approximations at one and two loops. For an exhaustive list of references and discussion see, M Carena, J S Conway, H E Haber and J Hobes et al., Report of the Tevatron Higgs working group, hep-ph/0010338

  13. H E Haber and Y Nir, Phys. Lett. B306, 327 (1993)

    ADS  Google Scholar 

  14. H E Haber, in Physics from the Planck scale to the electroweak scale, Proc. of the US-Polish Workshop, Warsaw, Sept. 21–24, 1994 edited by P Nath, T Taylor and S Pokorski (World Scientific, Singapore, 1995) p. 49

    Google Scholar 

  15. A Dobado, M J Herrero and S Penaranda, Eur. Phys. J. C17, 487 (2000)

    Article  ADS  Google Scholar 

  16. For review and references, see P Igo-Kemenes, Searches for Higgs bosons, in ref. [1]

    Google Scholar 

  17. J F Gunion, H E Haber and R V Kooten, in Linear collider physics in the new millennium edited by K Fujii, D Miller and A Soni (World Scientific, Singapore, 2005), hep-ph/0301023

    Google Scholar 

  18. S Dawson and M Oreglia, Ann. Rev. Nucl. Part. Sci. 54, 269 (2004)

    Article  ADS  Google Scholar 

  19. M Carena, H E Haber, H E Logan and S Mrenna, Phys. Rev. D65, 055005 (2002); Erratum: ibid D65, 099902 (20002)

  20. S Dawson, S Heinemeyer and S Mrenna, Phys. Rev. D66, 055002 (2002)

    Google Scholar 

  21. J Guasch, W Hollik and S Penaranda, Phys. Lett. B515, 367 (2001)

    ADS  Google Scholar 

  22. K Desch, T Klimkovich, T Kuhl and A Raspereza, Study of Higgs boson pair production at linear collider, hep-ph/0406229

  23. J Ellis, S Heinemeyer K A Olive and G W Weiglein, J. High Energy Phys. 0301, 006 (2003)

    Article  ADS  Google Scholar 

  24. M M Alsharo’a et al, Phys. Rev. ST. Accel. Beams 6, 081001 (2003)

    Google Scholar 

  25. D B Cline, J. Phys. G29, 1661 (2003)

    ADS  Google Scholar 

  26. I Bigi et al, Phys. Rep. 371, 151 (2002)

    Article  ADS  Google Scholar 

  27. C Blochinger et al, Higgs factory working group of the ECFA-CERN study on Neutrino Factory and Muon Storage Rings at CERN, Physics Opportunities at μ + μ-Higgs Factories, hep-ph/0202199

  28. R Raja et al, The program in muon and neutrino physics: Super beams, Cold muon beams, neutrino factory and the muon collider, Submitted to Snowmass 2001, hep-ex/0108041

  29. C M Ankenbrandt et al, Phys. Rev. ST. Accel. Beams 2, 08100 (1999)

    Google Scholar 

  30. V Barger, M S Berger, J F Gunion and T Han, Phys. Rev. Lett. 75, 1462 (1995); ibid. 78, 3991 (1997); Phys. Rep. 286, 1 (1997)

    Article  ADS  Google Scholar 

  31. M S Berger, Precision W-boson and Higgs boson mass determination at muon colliders, hep-ph/9712474 (1997); Threshold cross-section measurements, hep-ph/9802213 (1998); Muon collider physics at very high energies, hep-ph/0001018 (2000); SUSY thresholds at a muon collider, hep-ph/0003128 (2000)

  32. B Kamal, W Marciano and Z Parsa, in Proc. of the Workshop on Physics at the First Muon Collider and at the Front End of the Muon Collider (Fermilab, Nov. 1997) edited by S Geer and R Raja, AIP Conf. Proc. 435, 657 (1998)

  33. J K Singhal and Sardar Singh, Phys. Rev. D64, 013007 (2001)

    Google Scholar 

  34. J K Singhal, Sardar Singh, A K Nagawat and N K Sharma, Phys. Rev. D63, 017302 (2001)

    Google Scholar 

  35. P E Asakawa, S Y Choi and J S Lee, Phys. Rev. D63, 015012 (2001)

    Google Scholar 

  36. V Barger, T Han and C G Zhou, Phys. Lett. B480, 140 (2000)

    ADS  Google Scholar 

  37. A G Akeroyd, A Arhrib and C Dove, Phys. Rev. D61, 071702(R) (2000)

  38. B Grzadkowski, J F Gunion and J Pliszka, Nucl. Phys. B583, 49 (2000)

    Article  ADS  Google Scholar 

  39. G J Gunaris and F M Renard, Phys. Rev. D59, 113015 (1999)

    Google Scholar 

  40. A Djouadi, V Driesen and C Junger, Phys. Rev. D54, 759 (1996)

    ADS  Google Scholar 

  41. C Quigg, Gauge theories of the strong, weak and electromagnetic interactions (The Benjamin/Cumming Publishing Company, Inc., Reading, Mass., 1983)

    Google Scholar 

  42. V Barger and R Phillips, Collider physics (Addison Wesley Publishing Company, Redwood City, Mass., 1987) p. 101

    Google Scholar 

  43. F M Renard, Basics of electron positron collisions (Edition Frontieres, Gif sur Yvette, France, 1981)

    Google Scholar 

  44. J F Gunion and H E Haber, Nucl. Phys. B272, 1 (1986); Erratum: hep-ph/9301205

    Article  ADS  Google Scholar 

  45. see for example, M Spira, Fortschr. Phys. 46, 203 (1998)

    Article  MATH  Google Scholar 

  46. H E Haber, Where are radiative corrections important in the minimal supersymmetric model?, hep-ph/9305248

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, J.K., Singh, S. & Nagawat, A.K. Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider. Pramana - J Phys 68, 931–941 (2007). https://doi.org/10.1007/s12043-007-0093-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0093-6

Keywords

PACS Nos

Navigation