Skip to main content
Log in

Evidence of self-affine multiplicity scaling of charged-particle multiplicity distribution in hadron-nucleus interaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A self-affine analysis of charged-particle multiplicity distribution (protons + pions) in π -AgBr interaction at 350 GeV/c is performed according to the two-dimensional factorial moment methodology using the concept of Hurst exponent in X cosθ -X ϕ phase space. Comparing with the results obtained from self-similar analysis, the self-affine analysis shows a better power-law behaviour. Corresponding results are compared with shower multiplicity distribution (pions). Multifractal behaviour is observed for both types of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R C Hwa et al, Fluctuations and fractal structure, Proc. Ringberg Workshop on Multiparticle Production (World Scientific, Singapore, 1992)

    Google Scholar 

  2. W Kittel, Proc. Twentieth International Symposium on Multiparticle dynamics (World Scientific, Singapore, 1991)

    Google Scholar 

  3. B Buschbeck and P Lipa, Mod. Phys. Lett. A4, 1871 (1989)

    ADS  Google Scholar 

  4. A Bialas and R Peschanski, Nucl. Phys. B308, 857 (1988); Nucl. Phys. B273, 703 (1986)

    Article  ADS  Google Scholar 

  5. B L Hao, Chaos (World Scientific, Singapore, 1984)

    MATH  Google Scholar 

  6. P L Jain and G Singh, Nucl. Phys. A596, 700 (1996)

    ADS  Google Scholar 

  7. D Ghosh, A K Jafry, A Deb, S Sarkar, R Chattopadhyay and S Das, Phys. Rev. C59, 2286 (1999)

    ADS  Google Scholar 

  8. N M Agababyan et al, Phys. Lett. B382, 305 (1996)

    ADS  Google Scholar 

  9. A Bialas and B Ziaja, Phys. Lett. B378, 319 (1996)

    ADS  Google Scholar 

  10. E A De Wolf, I M Dremin and W Kittel, Phys. Rep. 270, 1 (1996)

    Article  ADS  Google Scholar 

  11. D Ghosh, A Deb, M Lahiri, A Dey, Sk A Hossain, S Das, S Sen and S Halder, Phys. Rev. D49, 3113 (1994)

    ADS  Google Scholar 

  12. A M Tawfik, J. Phys. G27, 2283 (2001)

    ADS  Google Scholar 

  13. T H Burnett et al, Phys. Rev. Lett. 50, 2062 (1983)

    Article  ADS  Google Scholar 

  14. NA22 Collaboration: M Adamus et al, Phys. Lett. B185, 200 (1987)

    ADS  Google Scholar 

  15. I M Dremin, JETP Lett. 30, 152 (1980)

    Google Scholar 

  16. A Bialas and R Peschanski, Phys. Lett. B207, 59 (1988)

    ADS  Google Scholar 

  17. W Ochs and J Wosiek, Phys. Lett. B214, 617 (1988)

    ADS  Google Scholar 

  18. L Van Hove, CERN preprint TH-5236/88 (1988)

  19. W Ochs, Phys. Lett. B247, 101 (1990)

    ADS  Google Scholar 

  20. L Van Hove, Phys. Lett. B28, 429 (1969); Nucl. Phys. B9, 331 (1969)

    ADS  Google Scholar 

  21. Wu Yuanfang and Liu Lianshou, Phys. Rev. Lett. 70, 3197 (1993)

    Article  Google Scholar 

  22. S Wang, Z Wang and C Wu, Phys. Lett. B410, 323 (1997)

    ADS  Google Scholar 

  23. S Wang and Wu C Wu, Chin. Phys. Lett. 18, 18 (2001)

    Article  ADS  Google Scholar 

  24. N M Agababyan et al, Phys. Lett. B431, 451 (1998)

    ADS  Google Scholar 

  25. D Ghosh, A Deb, M Mondal, S Bhattacharyya and J Ghosh, Eur. Phys. J. A14, 77(2002)

    ADS  Google Scholar 

  26. D Ghosh, A Deb, S Bhattacharyya and J Ghosh, Nucl. Phys. A720, 419 (2003)

    ADS  Google Scholar 

  27. D Ghosh, A Deb, S Bhattacharyya, J Ghosh and R Sarkar, J. Phys. G29, 983 (2003)

    ADS  Google Scholar 

  28. C F Powell, P H Fowler and D H Perkins, The study of elementary particles by photographic method (Pergamon Press, Oxford, 1959)

    Google Scholar 

  29. Z V Anzon et al, Nucl. Phys. B129, 205 (1977)

    Article  ADS  Google Scholar 

  30. I Otterlund et al, Nucl. Phys. B142, 445 (1978)

    Article  ADS  Google Scholar 

  31. M I Adamovich et al, Phys. Rev. C40, 66 (1988)

    ADS  Google Scholar 

  32. D Ghosh, A Deb, J Ghosh, R Chattopadhyay, M Lahiri, A K Jafri, S Das and Md A Rahman, Phys. Rev. C62, 037902 (2000)

    Google Scholar 

  33. I Otterlund et al, Lund University Preprint LUIP 7804 (1978)

  34. J Babecki et al, Krakow Report No. 970/PH (1977)

  35. B Furmanaka et al, Krakow Report No. 977/PH (1977)

  36. B Anderson, I Otterlund and E Stenlund, Phys. Lett. B73, 343 (1978)

    ADS  Google Scholar 

  37. E Stenlund and I Otterlund, Nucl. Phys. B198, 407 (1982)

    Article  ADS  Google Scholar 

  38. A Jurak and A Linscheid, Acta Phys. Polon. B8, 875 (1977)

    Google Scholar 

  39. D Ghosh, J Roy, K Sengupta, M Basu, S Naha and A Bhattacharya, Hadronic J. 5,163 (1981)

    Google Scholar 

  40. D Ghosh, S Haldar, D Haldar and A Deb, Europhys. Lett. 29, 521 (1995)

    Google Scholar 

  41. D Ghosh, A Deb, S Biswas, P Mandal, J Ghosh, S Bhattacharyya, K Patra and M Mondal, Czech. J. Phys. 53, 1173 (2003)

    Article  ADS  Google Scholar 

  42. D Ghosh, A Deb, M Banerjee Lahiri, P Mandal, S Biswas and P K Haldar, J. Phys. G30, 351 (2004)

    ADS  Google Scholar 

  43. M S Khan, Sk S Ali, P Singh, H Khushnood, A R Ansari, M A Nasr, T Ahmed and M Irfan, Can. J. Phys. 75, 549 (1997)

    Article  ADS  Google Scholar 

  44. T Ahmad and M Irfan, Phys. Rev. C44, 1555 (1991)

    ADS  Google Scholar 

  45. D Ghosh, A Deb, S Pal, P K Haldar, S Bhattacharyya, P Mandal, S Biswas and M Mondal, Fractals 13, 325 (2005)

    Article  Google Scholar 

  46. D Ghosh, A Deb, P Mandal, S Biswas and J Ghosh, Phys. Rev. C69, 017901 (2004)

  47. G Paladin and A Valpiani, Phys. Rep. 156, 147 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  48. H G E Hentschel and I Procaccia, Physica D8, 435 (1983)

    MathSciNet  ADS  Google Scholar 

  49. M H Jensen, L P Kadanoff and A Libchaber, Phys. Rev. Lett. 55, 2798 (1985)

    Article  ADS  Google Scholar 

  50. B B Mandelbrot, The fractal geometry of nature (Freeman, New York, 1982)

    MATH  Google Scholar 

  51. P Lipa and B Buschbeck, Phys. Lett. B223, 465 (1989)

    ADS  Google Scholar 

  52. D Ghosh, P Ghosh, A Deb, D Halder, S Das, A Hossain and A Dey, Phys. Rev. D46,3712 (1992)

    ADS  Google Scholar 

  53. A Bialas and M Gazdzicki, Phys. Lett. B252, 483 (1990)

    ADS  Google Scholar 

  54. L Lianshou, Z Yang and W Yuanfang, Z. Phys. C69, 323 (1996)

    Google Scholar 

  55. W Ochs, Z. Phys. C50, 339 (1991)

    Google Scholar 

  56. L Lianshou, Z Yang and D Yue, Z. Phys. C73, 535 (1997)

    Google Scholar 

  57. J M Alberty and R Peschanski, Z. Phys. C52, 297 (1991)

    Google Scholar 

  58. M Blazek, Chek. Jr. Phys. 43, 111 (1993)

    ADS  Google Scholar 

  59. P Lipa, Z. Phys. C54, 185 (1992)

    Google Scholar 

  60. G Abbiendi et al, Eur. Phys. J. C11, 239 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Deb, A., Pal, S. et al. Evidence of self-affine multiplicity scaling of charged-particle multiplicity distribution in hadron-nucleus interaction. Pramana - J Phys 68, 789–801 (2007). https://doi.org/10.1007/s12043-007-0078-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0078-5

Keywords

PACS No.

Navigation