Skip to main content
Log in

Synthesis of carbon nanotubes by catalytic vapor decomposition (CVD) method: Optimization of various parameters for the maximum yield

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper describes an effect of flow rate, carrier gas (H2, N2 and Ar) composition, and amount of benzene on the quality and the yield of carbon nanotubes (CNTs) formed by catalytical vapour dcomposition (CVD) method. The flow and mass control of gases and precursor vapors respectively were found to be interdependent and therefore crucial in deciding the quality and yield of CNTs. We have achieved this by modified soap bubble flowmeter, which controlled the flow rates of two gases, simultaneously. With the help of this set-up, CNTs could be prepared in any common laboratory. Raman spectroscopy indicated the possibilities of formation of single-walled carbon nanotubes (SWNTs). From scanning electron microscopy (SEM) measurements, an average diameter of the tube/bundle was estimated to be about 70 nm. The elemental analysis using energy dispersion spectrum (EDS) suggested 96 at.wt.% carbon along with ca. 4 at.wt.% iron in the as-prepared sample. Maximum yield and best quality CNTs were obtained using H2 as the carrier gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Poncharal, Z L Wang, D Ugarte and W A Heer, Science 283, 1513 (1999)

    Article  ADS  Google Scholar 

  2. M M J Tracy, T W Ebbesen and J M Gibson, Nature (London) 381, 678 (1996)

    Article  ADS  Google Scholar 

  3. E W Wong, P E Sheehan and C N Lieber, Science 277, 1971 (1997)

    Article  Google Scholar 

  4. H Dai, E W Wong and C M Lieber, Science 272, 523 (1996)

    Article  ADS  Google Scholar 

  5. S J Tans, A R M Verschueren and C Dekker, Nature (London) 49, 393 (1998)

    Google Scholar 

  6. S Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  7. J-M Bonard, T Stöckli, F Maier, W A de Heer and A Chatelain, Phys. Rev. Lett. 81, 1441 (1998)

    Article  ADS  Google Scholar 

  8. V Derycke, R Martel, J Appenzeller and P Avouris, Nano Lett. 1, 453 (2001)

    Article  ADS  Google Scholar 

  9. J Kong, N R Franklin, C Zhou, M G Chapline, S Peng, K Cho and H Dai, Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  10. P Chen, X Wu, J Lin and K L Tan, Science 285, 91 (1999)

    Article  Google Scholar 

  11. C Liu, Y Y Fan, M Liu, H T Cong, H M Cheng and M S Dresselhaus, Science 286, 1127 (1999)

    Article  Google Scholar 

  12. H Dai, J H Hafner, A G Rinzler, D T Colbert and R E Smalley, Nature (London) 384, 147 (1996)

    Article  ADS  Google Scholar 

  13. T W Ebbesen, H J Lezec, H Hiura, J W Bennett, H F Ghaemi and T Thio, Nature (London) 54, 382 (1996)

    Google Scholar 

  14. Y Saito, K Hamaguchi, K Hata, K Uchida, Y Tasaka, F Ikazaki, M Yumura, A Kasuya and Y Nishina, Nature (London) 389, 554 (1997)

    Article  ADS  Google Scholar 

  15. C Y Liu, A J Bard, F Wudl, I Weitz and R Heath, J. Electrochem. Solid State Lett. 2, 557 (1999)

    Google Scholar 

  16. A Thess, R Lee, P Nikolaev, H Dai, P Petit, J Robert, C Xu, Y H Lee, S G Kim, A G Rinzler, D T Colbert, G E Scuseria, D Tomek, J E Fischer and R E Smalley, Science 273, 483 (1996)

    Article  ADS  Google Scholar 

  17. C Journet, W Maser, P Bernier, A Loiseau, D Lamy, M Chapelle, S Lefrant, P Deniard, R Lee and J Fischer, Nature (London) 388, 756 (1997)

    Article  ADS  Google Scholar 

  18. D S Bethune, C H Klang, M S de Vries, G Gorman, R Savoy, J Vazquez and R Beyers, Nature (London) 363, 605 (1993)

    Article  ADS  Google Scholar 

  19. A Govindaraj and C N R Rao, Pure Appl. Chem. 74, 1571 (2002)

    Article  Google Scholar 

  20. C N R Rao and A Govindaraj, Proc. Indian Acad. Sci. (Chem. Sci.) 113, 375 (2001)

    Google Scholar 

  21. A Fonseca, K Hernadi, P Piedigrosso, J-F Colomer, K Mukhopadhyay, R Doome, S Lazarescu, L P Biro, Ph Lambin, P A Thiry, D Bernaerts and J B Nagy, Appl. Phys. A67, 11 (1998)

    ADS  Google Scholar 

  22. C J Lee, Seung Chul Lyu, Hyoun-Woo Kim, Chong-Yun Park and Cheol-Woong Yang, Chem. Phys. Lett. 359, 109 (2002)

    Article  ADS  Google Scholar 

  23. M Endo, K Takeuchi, S Igarashi, K Kobori, M Shiraishi and H Kroto, J. Phys. Chem. Solids 54, 1841 (1993)

    Article  ADS  Google Scholar 

  24. K Bladh, L K L Falk and F Rohmund, Appl. Phys. A70, 317 (2000)

    ADS  Google Scholar 

  25. W E Alvarez, F Pompeo, J E Herrera, L Balzano and D E Resasco, Chem. Mater. 14, 1853 (2002)

    Article  Google Scholar 

  26. C J Lee and J Park, J. Phys. Chem. B105, 2365 (2001)

    Google Scholar 

  27. Nam Seo Kim, Y T Lee, J Park, H Ryu, H J Lee, S Y Choi, J Choo and F Rohmund, J. Phys. Chem. B106, 9286 (2002)

    Google Scholar 

  28. M Diener, N Nichelson and J Alford, J. Phys. Chem. B104, 9615 (2000)

    Google Scholar 

  29. C N R Rao, R Sen, B C Satishkumar and A Govindaraj, Chem. Comm. 15, 1525 (1998)

    Article  Google Scholar 

  30. H Hou, A K Schaper, F Weller and A Greiner, Chem. Mater. 14, 3990 (2002)

    Article  Google Scholar 

  31. M S Mohlala, X-Y Liu, J M Robinson and N J Coville, Organometallics 24, 972 (2005)

    Article  Google Scholar 

  32. Y S Park, Y C Choi, K S Kim, D C Chung, D J Bae, K H An, S C Lim, X Y Zhu and Y H Lee, Carbon 39, 655 (2001)

    Article  Google Scholar 

  33. T R Ravindran, B R Jackson and J V Badding, Chem. Mater. 13, 4187 (2001)

    Article  Google Scholar 

  34. H Ago, K Nakamura, N Uhera and T Masaharu, J. Phys. Chem. B108, 18908 (2004)

    Google Scholar 

  35. C V Santos, A L M Hernandez, M L Cassou, A A Castillo and V M Castano, Nanotechnology 13, 495 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Haram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samant, K.M., Haram, S.K. & Kapoor, S. Synthesis of carbon nanotubes by catalytic vapor decomposition (CVD) method: Optimization of various parameters for the maximum yield. Pramana - J Phys 68, 51–60 (2007). https://doi.org/10.1007/s12043-007-0005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0005-9

Keywords

PACS Nos

Navigation