Skip to main content
Log in

Quantum chromodynamics at hadron colliders

  • Proceedings Of The DAE-BRNS Ninth Workshop On High Energy Physics Phenomenology (WHEPP-9)—Part-II
  • Working Group 4: Quantum Chromodynamics And Quark Gluon Plasma
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

QCD is an extensively developed and tested gauge theory, which models the strong interactions in the high-energy regime. In this talk, I shall review the considerable progress which has been achieved in the last few years in the most actively studied QCD topics: Monte Carlo models, higher-order corrections, and parton distribution functions. Thanks to that, QCD in the high-energy regime is becoming more and more an essential precision tool kit to analyse Higgs and new physics scenarios at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Bethke, Nucl. Phys. Proc. Suppl. 135, 345 (2004), hep-ex/0407021

    Article  ADS  Google Scholar 

  2. S Moch, J A M Vermaseren and A Vogt, Nucl. Phys. B688, 101 (2004), hep-ph/0403192

    Article  ADS  MathSciNet  Google Scholar 

  3. A Vogt, S Moch and J A M Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111

    Article  ADS  MathSciNet  Google Scholar 

  4. CDF Collaboration: D Acosta et al, Phys. Rev. D70, 072002 (2004), hep-ex/0404004

    ADS  Google Scholar 

  5. Y L Dokshitzer, G Marchesini and B R Webber, Nucl. Phys. B469, 93 (1996), hep-ph/9512336

    Article  ADS  Google Scholar 

  6. M L Mangano, presented at the KITP Collider Physics Conference, January 2004, http://online.kitp.ucsb.edu/online/collider_c04/mangano/

  7. J C Collins, L Frankfurt and M Strikman, Phys. Lett. B307, 161 (1993), hep-ph/9212212

    ADS  Google Scholar 

  8. CDF Collaboration: K Terashi, Int. J. Mod. Phys. A16S1A, 265 (2001)

    Google Scholar 

  9. CDF Collaboration: D Acosta et al, Phys. Rev. Lett. 93, 141601 (2004), hep-ex/0311023

    Article  ADS  Google Scholar 

  10. A D Martin, R G Roberts, W J Stirling and R S Thorne, Eur. Phys. J. C14, 133 (2000), hep-ph/9907231

    Article  ADS  Google Scholar 

  11. M L Mangano, M Moretti and R Pittau, Nucl. Phys. B632, 343 (2002), hep-ph/0108069

    Article  ADS  Google Scholar 

  12. M L Mangano, M Moretti, F Piccinini, R Pittau and A D Polosa, J. High Energy Phys. 0307, 001 (2003), hep-ph/0206293

    Article  ADS  Google Scholar 

  13. L Lonnblad, Comput. Phys. Commun. 71, 15 (1992)

    Article  ADS  Google Scholar 

  14. T Stelzer and W F Long, Comput. Phys. Commun. 81, 357 (1994), hep-ph/9401258

    Article  ADS  Google Scholar 

  15. F Maltoni and T Stelzer, J. High Energy Phys. 0302, 027 (2003), hep-ph/0208156

    Article  ADS  Google Scholar 

  16. A Pukhov et al, hep-ph/9908288

  17. MINAMI-TATEYA Group Collaboration: T Ishikawa, T Kaneko, K Kato, S Kawabata, Y Shimizu and H Tanaka, KEK-92-19

  18. F Yuasa et al, Prog. Theor. Phys. Suppl. 138, 18 (2000), hep-ph/0007053

    ADS  Google Scholar 

  19. A Kanaki and C G Papadopoulos, Comput. Phys. Commun. 132, 306 (2000), hep-ph/0002082

    Article  MATH  ADS  Google Scholar 

  20. F Krauss, A Schalicke, S Schumann and G Soff, Phys. Rev. D70, 114009 (2004), hep-ph/0409106

    ADS  Google Scholar 

  21. E Accomando, A Ballestrero and E Maina, Nucl. Instrum. Methods A534, 265 (2004), hep-ph/0404236

    ADS  Google Scholar 

  22. G Marchesini, B R Webber, G Abbiendi, I G Knowles, M H Seymour and L Stanco, Comput. Phys. Commun. 67, 465 (1992)

    Article  ADS  Google Scholar 

  23. T Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  24. S Catani, F Krauss, R Kuhn and B R Webber, J. High Energy Phys. 0111, 063 (2001), hep-ph/0109231

    Article  ADS  Google Scholar 

  25. F Krauss, J. High Energy Phys. 0208, 015 (2002), hep-ph/0205283

    Article  ADS  Google Scholar 

  26. S HOche, F Krauss, N Lavesson, L Lonnblad, M Mangano, A Schalicke and S Schumann, hep-ph/0602031

  27. S Frixione and B R Webber, J. High Energy Phys. 0206, 029 (2002), hep-ph/0204244

    Article  ADS  Google Scholar 

  28. W T Giele and E W N Glover, Phys. Rev. D46, 1980 (1992)

    ADS  Google Scholar 

  29. W T Giele, E W N Glover and D A Kosower, Nucl. Phys. B403, 633 (1993), hep-ph/9302225

    Article  ADS  Google Scholar 

  30. S Frixione, Z Kunszt and A Signer, Nucl. Phys. B467, 399 (1996), hep-ph/9512328

    Article  ADS  Google Scholar 

  31. Z Nagy and Z Trocsanyi, Nucl. Phys. B486, 189 (1997), hep-ph/9610498

    Article  ADS  Google Scholar 

  32. S Catani and M H Seymour, Nucl. Phys. B485, 291 (1997); Erratum, Nucl. Phys. B510, 291 (1997), hep-ph/9605323

    Article  ADS  Google Scholar 

  33. R K Ellis, D A Ross and A E Terrano, Nucl. Phys. B178, 421 (1981)

    Article  ADS  Google Scholar 

  34. L J Dixon and A Signer, Phys. Rev. D56, 4031 (1997), hep-ph/9706285

    ADS  Google Scholar 

  35. Z Nagy and Z Trocsanyi, Phys. Rev. Lett. 79, 3604 (1997), hep-ph/9707309

    Article  ADS  Google Scholar 

  36. J Campbell and R K Ellis, Phys. Rev. D65, 113007 (2002), hep-ph/0202176

    ADS  Google Scholar 

  37. S D Ellis, Z Kunszt and D E Soper, Phys. Rev. Lett. 64, 2121 (1990)

    Article  ADS  Google Scholar 

  38. W B Kilgore and W T Giele, hep-ph/9903361

  39. Z Nagy, Phys. Rev. Lett. 88, 122003 (2002), hep-ph/0110315

    Article  ADS  Google Scholar 

  40. B Bailey, J F Owens and J Ohnemus, Phys. Rev. D46, 2018 (1992)

    ADS  Google Scholar 

  41. T Binoth, J P Guillet, E Pilon and M Werlen, Eur. Phys. J. C16, 311 (2000), hep-ph/9911340

    ADS  Google Scholar 

  42. V Del Duca, F Maltoni, Z Nagy and Z Trocsanyi, J. High Energy Phys. 0304, 059 (2003), hep-ph/0303012

    Article  ADS  Google Scholar 

  43. M L Mangano, P Nason and G Ridolfi, Nucl. Phys. B373, 295 (1992)

    Article  ADS  Google Scholar 

  44. J M Campbell and R K Ellis, Phys. Rev. D60, 113006 (1999), hep-ph/9905386

    ADS  Google Scholar 

  45. L J Dixon, Z Kunszt and A Signer, Phys. Rev. D60, 114037 (1999), hep-ph/9907305

    ADS  Google Scholar 

  46. D de Florian, M Grazzini and Z Kunszt, Phys. Rev. Lett. 82, 5209 (1999), hep-ph/9902483

    Article  ADS  Google Scholar 

  47. C J Glosser and C R Schmidt, J. High Energy Phys. 0212, 016 (2002), hep-ph/0209248

    Article  ADS  Google Scholar 

  48. T Figy, C Oleari and D Zeppenfeld, Phys. Rev. D68, 073005 (2003), hep-ph/0306109

    ADS  Google Scholar 

  49. W Beenakker, S Dittmaier, M Kramer, B Plumper, M Spira and P M Zerwas, Phys. Rev. Lett. 87, 201805 (2001), hep-ph/0107081

    Article  ADS  Google Scholar 

  50. L Reina and S Dawson, Phys. Rev. Lett. 87, 201804 (2001), hep-ph/0107101

    Article  ADS  Google Scholar 

  51. B Jager, C Oleari and D Zeppenfeld, hep-ph/0603177, hep-ph/0604200

  52. Z Bern, L J Dixon, D C Dunbar and D A Kosower, Nucl. Phys. B425, 217 (1994), hep-ph/9403226; Nucl. Phys. B435, 59 (1995), hep-ph/9409265

    Article  ADS  MathSciNet  Google Scholar 

  53. S J Bidder, N E J Bjerrum-Bohr, L J Dixon and D C Dunbar, Phys. Lett. B606, 189 (2005), hep-th/0410296

    ADS  MathSciNet  Google Scholar 

  54. S J Bidder, N E J Bjerrum-Bohr, D C Dunbar and W B Perkins, Phys. Lett. B608, 151 (2005), hep-th/0412023

    ADS  MathSciNet  Google Scholar 

  55. R Britto, E Buchbinder, F Cachazo and B Feng, Phys. Rev. D72, 065012 (2005), hep-ph/0503132

    ADS  Google Scholar 

  56. Z Bern, N E J Bjerrum-Bohr, D C Dunbar and H Ita, J. High Energy Phys. 0511, 027 (2005), hep-ph/0507019

    Article  ADS  Google Scholar 

  57. R Britto, B Feng and P Mastrolia, Phys. Rev. D73, 105004 (2006), hep-ph/0602178

    ADS  Google Scholar 

  58. R K Ellis, W T Giele and G Zanderighi, J. High Energy Phys. 0605, 027 (2006), hep-ph/0602185

    Article  ADS  Google Scholar 

  59. C F Berger, Z Bern, L J Dixon, D Forde and D A Kosower, hep-ph/0604195

  60. A Denner, S Dittmaier, M Roth and L H Wieders, Phys. Lett. B612, 223 (2005), hep-ph/0502063

    ADS  Google Scholar 

  61. Z Bern, V Del Duca, L J Dixon and D A Kosower, Phys. Rev. D71, 045006 (2005), hep-th/0410224

    ADS  Google Scholar 

  62. E Witten, Commun. Math. Phys. 252, 189 (2004), hep-th/0312171

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. F Cachazo, P Svrcek and E Witten, J. High Energy Phys. 0409, 006 (2004), hep-th/0403047

    Google Scholar 

  64. R Britto, F Cachazo, B Feng and E Witten, Phys. Rev. Lett. 94, 181602 (2005), hep-th/0501052

    Article  ADS  MathSciNet  Google Scholar 

  65. Z Bern, L J Dixon and D A Kosower, Phys. Rev. D71, 105013 (2005), hep-th/0501240, Phys. Rev. D73, 065013 (2006), hep-ph/0507005

    ADS  MathSciNet  Google Scholar 

  66. D A Kosower, Proceedings of the Ninth Workshop on High Energy Physics Phenomenology, 2006, Institute of Physics, Bhubaneswar, India

    Google Scholar 

  67. M Kramer and D E Soper, Phys. Rev. D66, 054017 (2002), hep-ph/0204113

    ADS  Google Scholar 

  68. T Binoth, G Heinrich and N Kauer, Nucl. Phys. B654, 277 (2003), hep-ph/0210023

    Article  ADS  Google Scholar 

  69. Z Nagy and D E Soper, J. High Energy Phys. 0309, 055 (2003), hep-ph/0308127

    Google Scholar 

  70. W T Giele and E W N Glover, J. High Energy Phys. 0404, 029 (2004), hep-ph/0402152

    Google Scholar 

  71. T Binoth, J P Guillet, G Heinrich, E Pilon and C Schubert, J. High Energy Phys. 0510, 015 (2005), hep-ph/0504267

    Google Scholar 

  72. R K Ellis, W T Giele and G Zanderighi, Phys. Rev. D72, 054018 (2005), hep-ph/0506196; Phys. Rev. D73, 014027 (2006), hep-ph/0508308

    ADS  Google Scholar 

  73. C Anastasiou and A Daleo, hep-ph/0511176

  74. M Czakon, hep-ph/0511200

  75. T Binoth, M Ciccolini and G Heinrich, Nucl. Phys. Proc. Suppl. 157, 48 (2006), hep-ph/0601254

    Article  ADS  Google Scholar 

  76. M L Mangano, AIP Conf. Proc. 753, 247 (2005), hep-ph/0411020

    Article  ADS  Google Scholar 

  77. CDF Collaboration: D Acosta et al, Phys. Rev. D71, 032001 (2005), hep-ex/0412071

    ADS  Google Scholar 

  78. M Cacciari, S Frixione, M L Mangano, P Nason and G Ridolfi, J. High Energy Phys. 0407, 033 (2004), hep-ph/0312132

    Google Scholar 

  79. S Frixione, P Nason and B R Webber, J. High Energy Phys. 0308, 007 (2003), hep-ph/0305252

    Google Scholar 

  80. M Dittmar, F Pauss and D Zurcher, Phys Rev. D56, 7284 (1997), hep-ex/9705004

    ADS  Google Scholar 

  81. S Frixione and M L Mangano, J. High Energy Phys. 0405, 056 (2004), hep-ph/0405130

    Google Scholar 

  82. K Melnikov and F Petriello, hep-ph/0603182

  83. D Graudenz, M Spira and P M Zerwas, Phys. Rev. Lett. 70, 1372 (1993)

    Article  ADS  Google Scholar 

  84. M Spira, A Djouadi, D Graudenz and P M Zerwas, Nucl. Phys. B453, 17 (1995), hep-ph/9504378

    Article  ADS  Google Scholar 

  85. One must keep in mind that the calculation of refs [83,84] is fully inclusive, thus it applies to an ideal detector with a 4π coverage. If selection cuts are applied, like in ref. [91], where Higgs production via gluon-gluon fusion is computed to NLO and to NNLO with a jet veto, the higher-order corrections may not be as large as in the fully inclusive calculation. Thus the ultimate judgement on the usefulness of a NNLO evaluation rests on an analysis with the cuts which will be used in the realistic simulations of the ATLAS and CMS detectors

  86. R V Harlander and W B Kilgore, Phys. Rev. Lett. 88, 201801 (2002), hep-ph/0201206

    Article  ADS  Google Scholar 

  87. C Anastasiou and K Melnikov, Nucl. Phys. B646, 220 (2002), hep-ph/0207004

    Article  ADS  Google Scholar 

  88. V Ravindran, J Smith and W L van Neerven, Nucl. Phys. B665, 325 (2003), hep-ph/0302135

    Article  ADS  Google Scholar 

  89. R Hamberg, W L van Neerven and T Matsuura, Nucl. Phys. B359, 343 (1991); Erratum, Nucl. Phys. B644, 403 (2002)

    Article  ADS  Google Scholar 

  90. C Anastasiou, L J Dixon, K Melnikov and F Petriello, Phys. Rev. Lett. 91, 182002 (2003), hep-ph/0306192

    Article  ADS  Google Scholar 

  91. C Anastasiou, L J Dixon, K Melnikov and F Petriello, Phys. Rev. D69, 094008 (2004), hep-ph/0312266

    ADS  Google Scholar 

  92. C Anastasiou, K Melnikov and F Petriello, Phys. Rev. Lett. 93, 262002 (2004), hep-ph/0409088

    Article  ADS  Google Scholar 

  93. C Anastasiou, K Melnikov and F Petriello, Nucl. Phys. B724, 197 (2005), hep-ph/0501130

    Article  ADS  Google Scholar 

  94. C Anastasiou and K Melnikov, Phys. Rev. D67, 037501 (2003), hep-ph/0208115

    ADS  Google Scholar 

  95. M Roth and A Denner, Nucl. Phys. B479, 495 (1996), hep-ph/9605420

    Article  ADS  Google Scholar 

  96. T Binoth and G Heinrich, Nucl. Phys. B585, 741 (2000), hep-ph/0004013; Nucl. Phys. B693, 134 (2004), hep-ph/0402265

    Article  ADS  MathSciNet  Google Scholar 

  97. G Heinrich, Nucl. Phys. Proc. Suppl. 116, 368 (2003), hep-ph/0211144; hep-ph/0601062

    Article  MATH  ADS  Google Scholar 

  98. C Anastasiou, K Melnikov and F Petriello, Phys. Rev. D69, 076010 (2004), hep-ph/0311311

    ADS  Google Scholar 

  99. C Anastasiou, K Melnikov and F Petriello, Phys. Rev. Lett. 93, 032002 (2004), hep-ph/0402280

    Article  ADS  Google Scholar 

  100. F A Berends and W T Giele, Nucl. Phys. B313, 595 (1989)

    Article  ADS  Google Scholar 

  101. A Gehrmann-De Ridder and E W N Glover, Nucl. Phys. B517, 269 (1998), hep-ph/9707224

    Article  ADS  Google Scholar 

  102. J M Campbell and E W N Glover, Nucl. Phys. B527, 264 (1998), hep-ph/9710255

    Article  ADS  Google Scholar 

  103. S Catani and M Grazzini, Phys. Lett. B446, 143 (1999), hep-ph/9810389; Nucl. Phys. B570, 287 (2000), hep-ph/9908523

    ADS  Google Scholar 

  104. V Del Duca, A Frizzo and F Maltoni, Nucl. Phys. B568, 211 (2000), hep-ph/9909464

    Article  ADS  Google Scholar 

  105. Z Bern, V Del Duca and C R Schmidt, Phys. Lett. B445, 168 (1998), hep-ph/9810409

    ADS  Google Scholar 

  106. D A Kosower, Nucl. Phys. B552, 319 (1999), hep-ph/9901201

    Article  ADS  Google Scholar 

  107. D A Kosower and P Uwer, Nucl. Phys. B563, 477 (1999), hep-ph/9903515

    Article  ADS  Google Scholar 

  108. Z Bern, V Del Duca, W B Kilgore and C R Schmidt, Phys. Rev. D60, 116001 (1999), hep-ph/9903516

    ADS  Google Scholar 

  109. D A Kosower, Phys. Rev. D67, 116003 (2003), hep-ph/0212097; Phys. Rev. Lett. 91, 061602 (2003), hep-ph/0301069; Phys. Rev. D71, 045016 (2005), hep-ph/0311272

    ADS  Google Scholar 

  110. S Weinzierl, J. High Energy Phys. 0303, 062 (2003), hep-ph/0302180; 0307, 052 (2003), hep-ph/0306248

  111. A Gehrmann-De Ridder, T Gehrmann and G Heinrich, Nucl. Phys. B682, 265 (2004), hep-ph/0311276

    Article  ADS  Google Scholar 

  112. A Gehrmann-De Ridder, T Gehrmann and E W N Glover, Nucl. Phys. B691, 195 (2004), hep-ph/0403057

    Article  ADS  Google Scholar 

  113. A Gehrmann-De Ridder, T Gehrmann and E W N Glover, Phys. Lett. B612, 36 (2005), hep-ph/0501291; Phys. Lett. B612, 49 (2005), hep-ph/0502110

    ADS  Google Scholar 

  114. S Frixione and M Grazzini, J. High Energy Phys. 0506, 010 (2005), hep-ph/0411399

    Google Scholar 

  115. G Somogyi, Z Trocsanyi and V Del Duca, J. High Energy Phys. 0506, 024 (2005), hep-ph/0502226

    Google Scholar 

  116. A Gehrmann-De Ridder, T Gehrmann and E W N Glover, J. High Energy Phys. 0509, 056 (2005), hep-ph/0505111

  117. S Weinzierl, hep-ph/0606008

  118. D J Gross and F Wilczek, Phys. Rev. D8, 3633 (1973)

    ADS  Google Scholar 

  119. G Altarelli and G Parisi, Nucl. Phys. B126, 298 (1977)

    Article  ADS  Google Scholar 

  120. G Curci, W Furmanski and R Petronzio, Nucl. Phys. B175, 27 (1980)

    Article  ADS  Google Scholar 

  121. A D Martin, R G Roberts, W J Stirling and R S Thorne, Phys. Lett. B531, 216 (2002), hep-ph/0201127

    ADS  Google Scholar 

  122. In ref. [120], which pre-dates refs [2,3], the NNLO global fit is based on a few NNLO fixed moments, which were known at that time

  123. D Stump et al, Phys. Rev. D65, 014012 (2002), hep-ph/0101051

    ADS  Google Scholar 

  124. J Pumplin et al, Phys. Rev. D65, 014013 (2002), hep-ph/0101032

    ADS  Google Scholar 

  125. J Pumplin, D R Stump, J Huston, H L Lai, P Nadolsky and W K Tung, J. High Energy Phys. 0207, 012 (2002), hep-ph/0201195

    Article  ADS  Google Scholar 

  126. A D Martin, R G Roberts, W J Stirling and R S Thorne, Eur. Phys. J. C28, 455 (2003), hep-ph/0211080

    ADS  Google Scholar 

  127. A D Martin, R G Roberts, W J Stirling and R S Thorne, Eur. Phys. J. C35, 325 (2004), hep-ph/0308087

    Article  ADS  Google Scholar 

  128. Accordingly, in connection with the use of W,Z production as a parton luminosity monitor mentioned in §5., ref. [125] estimates a 4% uncertainty on the Drell-Yan W,Z production cross section

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Duca, V. Quantum chromodynamics at hadron colliders. Pramana - J Phys 67, 861–873 (2006). https://doi.org/10.1007/s12043-006-0098-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-006-0098-6

Keywords

PACS Nos

Navigation