Skip to main content
Log in

Is dark matter visible by galactic gamma rays?

  • Working Group 2: Neutrino And Astroparticle Physics
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The EGRET excess in the diffuse galactic gamma ray data above 1 GeV shows all features expected from dark matter WIMP annihilation: (a) It is present and has the same spectrum in all sky directions, not just in the galactic plane. (b) The intensity of the excess shows the 1/r 2 profile expected for a flat rotation curve outside the galactic disc with an additionally interesting substructure in the disc in the form of a doughnut-shaped ring at 14 kpc from the centre of the galaxy. At this radius a ring of stars indicates the probable infall of a dwarf galaxy, which can explain the increase in DM density. From the spectral shape of the excess the WIMP mass is estimated to be between 50 and 100 GeV, while from the intensity the halo profile is reconstructed. Given the mass and intensity of the WIMPs the mass of the ring can be calculated, which is shown to explain the peculiar change of slope in the rotation curve at about 11 kpc. These results are model-independent in the sense that only the known shapes of signal and background were fitted with free normalization factors, thus being independent of model-dependent flux calculations. The statistical significance is more than 10σ in comparison with a fit of the conventional galactic model to the EGRET data. These signals of dark matter annihilation are compatible with supersymmetry including all electroweak constraints. The statistical significance combined with all features mentioned above provide an intriguing hint that the EGRET excess is indeed a signal from dark matter annihilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D N Spergel et al, Astrophys. J. Suppl. 148, 175 (2003), arXiv:astroph/0603449

    Article  ADS  Google Scholar 

  2. L Bergström, Rep. Prog. Phys. 63, 793 (2000), arXiv:hep-ph/0002126

    Article  ADS  Google Scholar 

  3. G Bertone, D Hooper and J Silk, Phys. Rep. 405, 279 (2005), arXiv:hep-ph/0404175

    Article  ADS  Google Scholar 

  4. W de Boer, M Herold, C Sander and V Zhukov, Euro. Phys. J. C33, 981 (2003), arXiv:hep-ph/0312037

    Google Scholar 

  5. W de Boer et al, arXiv:astro-ph/0408272

  6. W de Boer, New Astron. Rev. 49, 213 (2005), arXiv:hep-ph/0408166

    Article  ADS  Google Scholar 

  7. W de Boer et al, Astron. Astrophys. 444, 51 (2005)

    Article  ADS  Google Scholar 

  8. W de Boer et al, Phys. Lett. B636, 13 (2006)

    ADS  Google Scholar 

  9. W de Boer, C Sander, V Zhukov, A V Gladyshov and D I Kazakov, Phys. Rev. Lett. 95, 209001 (2005), arXiv:astro-ph/0602325

    Article  ADS  Google Scholar 

  10. E Kolb and M S Turner, The Early Universe, Frontiers in Physics (Addison Wesley, 1990)

  11. G Jungman, M Kamionkowski and K Griest, Phys. Rep. 267, 195 (1996)

    Article  ADS  Google Scholar 

  12. V Berezinsky, V Dokuchaev and Y Eroshenko, Phys. Rev. D68, 103003 (2003), arXiv:astro-ph/0301551

    ADS  Google Scholar 

  13. J Diemand, B Moore and J Stadel, Nature 433, 389 (2005)

    Article  ADS  Google Scholar 

  14. T Sjöstrand, P Eden, C Friberg, L Lönnblad, G Miu, S Mrenna and E Norrbin, Computer Phys. Commun. 135, 238 (2001)

    Article  MATH  ADS  Google Scholar 

  15. A W Strong, I V Moskalenko and O Reimer, Astrophys. J. 613, 962 (2004), arXiv:astro-ph/0406254

    Article  ADS  Google Scholar 

  16. S D Hunter et al, Astrophys. J. 481, 205 (1997)

    Article  ADS  Google Scholar 

  17. A W Strong and I V Moskalenko, Astrophys. J. 509, 212 (1998), arXiv:astroph/9807150

    Article  ADS  Google Scholar 

  18. I V Moskalenko and A W Strong, Astrophys. Space Sci. 272, 247 (2000), arXiv:astroph/9908032

    Article  ADS  Google Scholar 

  19. C Sander, Interpretation des Überschusses in diffuser galaktischer Gamma-strahlung oberhalb 1 GeV als Annihilationssignal dunkler Materie, Ph.D. Thesis (University of Karlsruhe, 2005)

  20. T Kamae, T Abe and T Koi, Astrophys. J. 620, 244 (2005), arXiv:astro-ph/0410617

    Article  ADS  Google Scholar 

  21. B Yanny et al, Astrophys. J. 588, 824 (2003), Erratum: Astrophys. J. 605, 575 (2004), arXiv:astro-ph/0301029

    Article  ADS  Google Scholar 

  22. R A Ibata, M J Irwin, G F Lewis, A M N Ferguson and N Tanvir, Mon. Not. R. Astron. Soc. 340, L21 (2003), arXiv:astro-ph/0301067

    Google Scholar 

  23. J D Crane, et al, Astrophys. J. 594, L119 (2003), arXiv:astro-ph/0307505

    Google Scholar 

  24. D Martinez-Delgado, J Penarrubia, D I Dinescu, D J Butler and H W Rix, arXiv:astro-ph/0506012

  25. M Honma and Y Sofue, Publ. of the Astronomical Society of Japan 48, 103 (1997) arXiv:astro-ph/9611156

    Google Scholar 

  26. The curves were calculated with the interactive web-based program on http://dmtools.berkeley.edu.

  27. P Gondolo, J Edsjo, P Ullio, L Bergstrom, M Schelke and E A Baltz, J. Cosmol. Astropart. Phys. 0407, 008 (2004), arXiv:astro-ph/0406204 and http://www.physto.se/~edsjo/darksusy/

    Article  ADS  Google Scholar 

  28. L Bergstrom, J Edsjo, M Gustafsson and P Salati, JCAP 0605, 006 (2006), arXiv:astro-ph/0602632

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, W. Is dark matter visible by galactic gamma rays?. Pramana - J Phys 67, 711–721 (2006). https://doi.org/10.1007/s12043-006-0064-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-006-0064-3

Keywords

PACS Nos

Navigation