Skip to main content
Log in

Low-field vortex dynamics in various high-T c thin films

  • Physics Of Vortex State
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a novel ac susceptibility technique for the study of vortex creep in superconducting thin films. With this technique we study the dynamics of dilute vortices in c-axis oriented Y-123, Hg-1212, and Tl-1212 thin films, as well as a axis oriented Hg-1212 thin films. Results on the Hg-1212 and Tl-1212 thin films indicate that dislocation-mediated plastic flux creep of single vortices dominates at low temperatures and fields. As the temperature (or the field) is increased, the increasing vortex-vortex interactions promote a collective behavior, which can be characterized by elastic creep with a non-zero μ exponent. Also, in some of these samples effects of thermally assisted quantum creep are visible up to 45 K in some of these samples. In Y-123 thin films, creep is found to be collective down to the lowest temperatures and fields investigated, while the quantum creep persists only up to 10–11 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D R Nelson, Phys. Rev. Lett. 60, 1973 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. D S Fisher, M P Fischer and D A Huse, Phys. Rev. B43, 130 (1991)

    ADS  Google Scholar 

  3. L Xing and Z Tešanovic, Phys. Rev. Lett. 65, 794 (1990)

    Article  ADS  Google Scholar 

  4. S Ryu, S Doniach, G Deutscher and A Kapitulnik, Phys. Rev. Lett. 68, 710 (1992)

    Article  ADS  Google Scholar 

  5. M J P Gingras and D A Huse, Phys. Rev. B53, 15193 (1996)

    ADS  Google Scholar 

  6. G Blatter and V Geshkenbein, Phys. Rev. Lett. 77, 4958 (1996)

    Article  ADS  Google Scholar 

  7. K Ghosh et al, Phys. Rev. Lett. 76, 4600 (1996)

    Article  ADS  Google Scholar 

  8. S S Banerjee et al, Physica C308, 25 (1998); Phys. Rev. B62, 11838 (2000)

    ADS  Google Scholar 

  9. D Pal et al, Phys. Rev. B62, 6699 (2000)

    ADS  Google Scholar 

  10. H A Radovan, H H Wen and P Ziemann, Eur. Phys. J. B7, 533 (1999)

    ADS  Google Scholar 

  11. Johan J Åkerman, S H Yun, U O Karlsson and K V Rao, Phys. Rev. B64, 024526 (2001)

    ADS  Google Scholar 

  12. Johan J Åkerman et al, Phys. Rev. B64, 094509 (2001)

    ADS  Google Scholar 

  13. R Griessen, J G Lensink, T A M Schröder and B Dam, Cryogenics 30, 563 (1990)

    Article  Google Scholar 

  14. M Jirsa, L Pust, H G Schnack and R Griessen, Physica C207, 85 (1993)

    ADS  Google Scholar 

  15. J J van Dalen, R Griessen, S Libbrecht, Y Bryunseraede and E Osquiguil, Phys. Rev. B54, 1366 (1996)

    ADS  Google Scholar 

  16. L Fabrega, J Fontcuberta, S Piñol, C J van der Beek and P H Kes, Phys. Rev. B47, 15250 (1993)

    ADS  Google Scholar 

  17. L Fàbrega, J Fontcuberta, L Civale and S Piñol, Phys. Rev. 50, 1199 (1994)

    Article  Google Scholar 

  18. B J Jönsson, K V Rao, S H Yun and U O Karlsson, Phys. Rev. B58, 5862 (1998)

    ADS  Google Scholar 

  19. M P Siegal et al, IEEE Trans. Appl. Supercond. 7, 1881 (1997)

    Article  Google Scholar 

  20. S H Yun, U O Karlsson, B J Jönsson, K V Rao and L D Madsen, J. Mater. Res. 14, 3181 (1999)

    Article  ADS  Google Scholar 

  21. B J Jönsson, Ph.D. Thesis (Royal Institute of Technology, Sweden, 1998)

    Google Scholar 

  22. V Ström, Ph.D. Thesis (Royal Institute of Technology, Sweden, 1999)

    Google Scholar 

  23. C P Bean, Phys. Rev. Lett. 8, (1962) 250

    Article  MATH  ADS  Google Scholar 

  24. C P Bean, Rev. Mod. Phys. 36, 31 (1964)

    Article  ADS  Google Scholar 

  25. P N Mikheenko and Yu E Kuzovlev, Physica C204, 229 (1993)

    ADS  Google Scholar 

  26. J Zhu, J Mester, J Lockhart and J Turneaure, Physica C212, 216 (1993)

    ADS  Google Scholar 

  27. J R Clem and A Sanchez, Phys. Rev. B50, 9355 (1994)

    ADS  Google Scholar 

  28. E H Brandt, Phys. Rev. B52, 15442 (1995)

    ADS  Google Scholar 

  29. H G Schnack, R Griessen, J G Lensink, C J van der Beek and P H Kes, Physica C197, 337 (1992)

    ADS  Google Scholar 

  30. A P Malozemoff and M P A Fischer, Phys. Rev. B42, 6784 (1990)

    ADS  Google Scholar 

  31. A C Mota, A Pollini, P Visani, K A Müller and J G Bednorz, Phys. Scr. 37, 823 (1988)

    Article  ADS  Google Scholar 

  32. H H Wen et al, Phys. Rev. Lett. 79, 1559 (1997)

    Article  ADS  Google Scholar 

  33. J R Thompson, Y R Sun and F Holtzberg, Phys. Rev. B44, R458 (1991)

  34. L Civale, L Krusin-Elbaum, J R Thompson and F Holtzberg, Phys. Rev. B50, 7188 (1994)

    ADS  Google Scholar 

  35. M Nikolo, W Kiehl, H M Duan and A M Hermann, Phys. Rev. B45, 5641 (1992)

    ADS  Google Scholar 

  36. F Warmont, Ch Goupil, V Hardy and Ch Simon, Phys. Rev. B58, 132 (1998)

    ADS  Google Scholar 

  37. J T Kucera, T P Orlando, G Virshup and J N Eckstein, Phys. Rev. B46, 11004 (1992)

    ADS  Google Scholar 

  38. Johan J Akerman, S H Yun, U O Karlsson, and K V Rao, Phys. Rev. B (in press)

  39. R Puzniak, K Isawa, R Usami and H Yamauchi, Physica C233, 21 (1994)

    ADS  Google Scholar 

  40. L Krusin-Elbaum, C C Tsuei and A Gupta, Nature 373, 679 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åkerman, J.J., Rao, K. Low-field vortex dynamics in various high-T c thin films. Pramana - J Phys 58, 985–993 (2002). https://doi.org/10.1007/s12043-002-0205-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0205-2

Keywords

PACS Nos

Navigation