Skip to main content

Advertisement

Log in

Electron entanglement near a superconductor and bell inequalities

  • Proceedings Of The Second Winter Institute On Foundations Of Quantum Theory And Quantum Optics
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Near the interface between a normal metal and a superconductor, Cooper pairs penetrate into the normal side, giving rise to the proximity effect. The two electrons of these pairs have entangled spin and orbital degrees of freedom. Nonlocal features of quantum mechanics can be probed by separating these two electrons. This is achieved with a fork geometry with two normal leads containing either spin- or energy-selective filters. A signature of entanglement can be detected by measuring the positive noise cross-correlations in this fork. In the case of energy filters, Bell-inequality checks constitute a definite probe of entanglement. We formulate Bell-type inequalities in terms of current-current cross-correlations associated with contacts with varying magnetization orientations. We find maximal violation (as in photons) when a superconductor is the particle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Einstein, B Podolsky and N Rosen, Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  2. A Aspect, P Grangier and G Roger, Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  3. A Aspect, J Dalibard and G Roger, Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. D Bouwmeester, A Ekert and A Zeilinger, The physics of quantum information: Quantum cryptography, quantum teleportation, quantum computations (Springer-Verlag, Berlin, 2000)

    Google Scholar 

  5. P Recher, E V Sukhorukov and D Loss, Phys. Rev. B63, 165314 (2001)

    ADS  Google Scholar 

  6. J Torrès and T Martin, Europhys. J. B12, 319 (1999)

    ADS  Google Scholar 

  7. M J M de Jong and C W J Beenakker, Phys. Rev. B49, 16070 (1994)

    ADS  Google Scholar 

  8. B A Muzykantskii and D E Khmelnitskii, Phys. Rev. 50, 3982 (1994)

    ADS  MathSciNet  Google Scholar 

  9. M P Anantaram and S Datta, Phys. Rev. 53, 16390 (1996)

    Google Scholar 

  10. G Lesovik, T Martin and J Torrès, Phys. Rev. 60, 11935 (1999)

    Article  Google Scholar 

  11. G Blatter, N Chtchelkatchev, G B Lesovik and T Martin, cond-mat/0112094

  12. J S Bell, Physics (Long Island City, N.Y.) 1, 195 (1965)

    Google Scholar 

  13. J S Bell, Rev. Mod. Phys. 38, 447 (1966)

    Article  MATH  ADS  Google Scholar 

  14. G B Lesovik, T Martin and G Blatter, Europhys. J. B24, 287 (2001)

    ADS  Google Scholar 

  15. D Feinberg, T Martin and O Sauret, cond-mat/0203215

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, T., Lovarco, C. Electron entanglement near a superconductor and bell inequalities. Pramana - J Phys 59, 279–287 (2002). https://doi.org/10.1007/s12043-002-0118-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0118-0

Keywords

PACS Nos

Navigation