Skip to main content
Log in

Phenomenology of a realistic accelerating universe using tracker fields

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a realistic scenario of tracking of scalar fields with varying equation of state. The astrophysical constraints on the evolution of scalar fields in the physical universe are discussed. The nucleosynthesis and the galaxy formation constraints have been used to put limits on Ωφ and estimate ɛ during cosmic evolution. Interpolation techniques have been applied to estimate ɛ ⋍0.772 at the present epoch. The epoch of transition from matter to quintessence dominated era and consequent onset of acceleration in cosmic expansion is calculated and taking the lower limit Θ /0 n =0.2 as estimated from SN e I a data, it is shown that the supernova observations beyond redshift z=1 would reveal deceleration in cosmic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Perlmutter et al, Bull. Am. Astron. Soc. 29, 1351 (1997); Astrophys. J. 517, 565 (1999) (1998)

    ADS  Google Scholar 

  2. A G Riess et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. P Garnavich et al, Astrophys. J. 493, L53 (1998); 509, 74 (1998)

  4. B P Schmidt et al, Astrophys. J. 507, 46 (1998)

    Article  ADS  Google Scholar 

  5. P J E Peebles and B Ratra, Astrophys. J. Lett. 325, L17 (1998)

  6. B Ratra and P J E Peebles, Phys. Rev. D37, 3406 (1998)

    ADS  Google Scholar 

  7. C Wetterich, Nucl. Phys. B302, 668 (1988)

    Article  ADS  Google Scholar 

  8. L P Chimento and A S Jakubi, Int. J. Mod. Phys. 5, 71 (1996)

    ADS  MathSciNet  Google Scholar 

  9. P G Ferreira and M Joyce, Phys. Rev. D58, 023503 (1998)

    Google Scholar 

  10. T Matos, F S Guzman and L A Weena-Lopez, Class, quantum Gravit. 17, 1707 (2000)

    Article  MATH  ADS  Google Scholar 

  11. T Barrieiro, E J Copeland and N J Nunes, Phys. Rev. D61, 127301 (2000)

    ADS  Google Scholar 

  12. A de la Macorra and G Piccilnelli, Phys. Rev. D61, 123503 (2000)

    ADS  Google Scholar 

  13. R R Coldwell, R Dave and P J Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  14. A R Liddl and R J Scherrer, Phys. Rev. D59, 023509 (1999)

    Google Scholar 

  15. D Wands, E J Copeland and A R Liddle, Phys. Rev. D57, 4686 (1998)

    ADS  Google Scholar 

  16. I Zlatev, L Wang and P J Steinhardt, Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  17. P J Steinhardt, Limin Wang and Ivaylo Zlatev, Phys. Rev. D59, 123504 (1999)

    ADS  Google Scholar 

  18. V B Johri, Phys. Rev. D63, 103504 (2001)

    ADS  Google Scholar 

  19. K A Olive and D Thomas, Astroparticle Phys. 11, 403 (1999)

    Article  ADS  Google Scholar 

  20. A G Riess et al, astro-ph/0104455 vl (27 April 2001)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johri, V.B. Phenomenology of a realistic accelerating universe using tracker fields. Pramana - J Phys 59, L553–L561 (2002). https://doi.org/10.1007/s12043-002-0053-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0053-0

Keywords

PACS Nos

Navigation