Skip to main content
Log in

Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Effects of non-local thermodynamic equilibrium (non-LTE) condition on emission and hydrodynamics of typical inertial confinement fusion (ICF) plasmas are studied. The average degree of ionization at high temperatures is seen to be much lower compared to the values obtained from Thomas-Fermi scaling or Saha equation for high-Z element like gold. LTE and non-LTE predictions for emitted radiation from laser-driven gold foil are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. The effects of one group and multigroup, LTE and non-LTE approximations of radiation transport on hydrodynamic parameters are studied for laser-driven aluminium and gold foils. It is further seen that non-LTE and multigroup effects play an important role in predicting conversion efficiency of laser light to X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J D Lindl, Inertial confinement fusion: The quest for ignition and energy gain using indirect drive (Springer, New York, 1998)

    Google Scholar 

  2. K Nishihara, M Murakami, H Azechi, T Jitsuni, T Kanabe, M Katayama, N Miyanaga, M Nakai, M Nakatsuka, K Tsubakimoto and S Nakai, Phys. Plasmas 1, 1653 (1994)

    Article  ADS  Google Scholar 

  3. V F Ermolovich, G N Remizob, Yu A Romanov, N A Ryabikina, R M Shagaliev, L L Vakhlamova, V V Vatulin, O A Vinokurov, K H Kang, J A Maruhn and R Bock, Laser and Particle Beams 16, 525 (1998)

    ADS  Google Scholar 

  4. D Colombant, M Klapisch and A Bar Shalom, Phys. Rev. Lett. 57, 3411 (1998)

    ADS  Google Scholar 

  5. T J Orzechowski, M D Rosen, H Kornblum, J L Porter, L J Suter, A R Thiessen and R J Wallace, Phys. Rev. Lett. 77, 3545 (1996)

    Article  ADS  Google Scholar 

  6. P Wang, J J MacFarlane and T J Orzechowski, Rev. Sci. Instrum. 68, 1107 (1997)

    Article  ADS  Google Scholar 

  7. H Nishimura, T Endo, H Shiraga, Y Kato and S Nakai, Appl. Phys. Lett. 62, 1344 (1993)

    Article  ADS  Google Scholar 

  8. R M More, J. Quant. Spectrosc. Radiat. Transfer 27, 345 (1982)

    Article  ADS  Google Scholar 

  9. G D Tsakiris and K Eidmann, J. Quant. Spectrosc. Radiat. Transfer 38, 353 (1987)

    Article  ADS  Google Scholar 

  10. H Takabe, T Nishikawa and K Mima, Statistical approach for calculating opacities of partially ionized high Z plasmas, NIFS Research Report ISSN 0915-6348 (1991)

  11. A Rickert and J Meyer-ter-Vehn, Laser and Particle Beams 8, 715 (1990)

    ADS  Google Scholar 

  12. K Eidmann, Emission and absorption of radiation in laser-produced plasmas, in Course and Workshop of the International School of Plasma Physics edited by A Caruso and E Sinodoni, Bologna (1989)

  13. K G Whitney, J Davis and J P Apruzese, Phys. Rev. A22, 2196 (1989)

    ADS  Google Scholar 

  14. S Kiyokawa, T Yabe and T Mochizukj, Jpn. J. Appl. Phys. 22, L772 (1983)

  15. M Klapisch, A Bar-Shalom, J Oreg and D Colombant, Phys. Plasmas 5, 1919 (1998)

    Article  ADS  Google Scholar 

  16. S E Bodner, D G Colombant, J H Gardner, R H Lehmberg, S P Obenchain, L Phillips, A J Schmitt and J D Sethian, Phys. Plasmas 5, 1901 (1998)

    Article  ADS  Google Scholar 

  17. J J Honrubia, R Dezulian, D Batani, S Bossi, M Koenig, A Benuzzi and N Grandjouan, Laser and Particle Beams 16, 13 (1998)

    Article  Google Scholar 

  18. R Marchand, C E Capjack and Y T Lee, Phys. Fluids 31, 949 (1998)

    Article  ADS  Google Scholar 

  19. G C Pomraning, The equations of radiation hydrodynamics (Pergamon Press, Oxford, 1973)

    Google Scholar 

  20. R Ramis, R Schmaiz and J Meyer-ter-Vehn, Comput. Phys. Commun. 49, 475 (1988)

    Article  ADS  Google Scholar 

  21. G B Zimmerman and W L Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975)

    Google Scholar 

  22. T Nishikawa, H Takabe and K Mima, L-splitting effect and line profile modeling for average atom model, NIFS Research Report ISSN 0915-6348 (1991)

  23. R L Kauffman, L J Suter, C B Darrow, J D Kilkenny, H N Kornblum, D S Montgomery, D W Phillion, M D Rosen, A R Theissen, R J Wallace and F Ze, Phys. Rev. Lett. 73, 2320 (1994)

    Article  ADS  Google Scholar 

  24. C F Fischer, T Brage and P Joenleson, Computational atomic structure (IPP, Bristol, 1997)

    Google Scholar 

  25. F Perrot, Phys. Scr. 39, 332 (1989)

    Article  ADS  Google Scholar 

  26. G Faussurier, C Blancard and A Decoster, J. Quant. Spectrosc. Radiat. Transfer 58, 233 (1997)

    Article  ADS  Google Scholar 

  27. T A Carlson, C W Nestor Jr., N Wassermann and J D McDowell, Atomic Data and Nuclear Data Tables 2, 63 (1970)

    Article  ADS  Google Scholar 

  28. D Colombant and G Tonon, J. Appl. Phys. 44, 3524 (1973)

    Article  ADS  Google Scholar 

  29. Ya B Zel’Dovich and Yu P Raizer, Physics of shock waves and high temperature hydrodynamics phenomena (Academic Press, New York, 1966)

    Google Scholar 

  30. D E Post, R V Jensen, C B Tarter, W H Grasberger and W A Lokke, Atomic Data and Nuclear Data Tables 20, 398 (1977)

    Article  ADS  Google Scholar 

  31. A Burgess, Astrophys. J. 141, 1588 (1965)

    Article  ADS  Google Scholar 

  32. J J MacFarlane, Comput. Phys. Commun. 56, 259 (1989)

    Article  ADS  Google Scholar 

  33. R M More, Adv. Atom. Molec. Phys. 21, 305 (1985)

    Article  Google Scholar 

  34. D Mihalas and B W Mihalas, Foundations of radiation hydrodynamics (Oxford University Press, Oxford, 1984)

    MATH  Google Scholar 

  35. I I Sobelman, Atomic spectra and radiative transitions (Springer-Verlag, Berlin, 1979)

    Google Scholar 

  36. B H Armstrong and R W Nicholls, Emission, absorption and transfer of radiation in heated atmosphere (Pergamon Press, Oxford, 1972)

    Google Scholar 

  37. A M Naqvi, J. Quant. Spectrosc. Radiat. Transfer 4, 597 (1964)

    Article  ADS  Google Scholar 

  38. S J Rose, J. Phys. B: At. Mol. Opt. Phys. 25, 1667 (1992)

    Article  ADS  Google Scholar 

  39. N K Gupta and B K Godwal, Laser and Particle Beams 19, 259 (2001)

    Article  ADS  Google Scholar 

  40. R D Richtmyer and K W Morton, Difference methods for initial value problem (John Wiley, New York, 1967)

    Google Scholar 

  41. L Spitzer, Physics of fully ionized gases (Wiley, New York, 1956)

    MATH  Google Scholar 

  42. S I Braginskii, in Reviews of plasma physics edited by M A Leontovich (Consultant Bureau, New York, 1965) vol. I

    Google Scholar 

  43. N K Gupta and V Kumar, Laser and Particle Beams 13, 389 (1995)

    ADS  Google Scholar 

  44. P D Goldstone, S R Goldman, W C Mead, J A Cobble, G Stradling, R H Day, A Hauer, M C Richardson, R S Morjoribanks, R L Keck, F J Marshall, W Seka, O Barnouin, B Yaakobi and S A Letzring, Phys. Rev. Lett. 59, 56 (1987)

    Article  ADS  Google Scholar 

  45. K S Holian (ed.), T-4 handbook of materials properties data base, Vol. 1c: Equation of State, La-10160, UC-34 (1984)

  46. V Yu Bychenkov and V T Tikhonchuk, in Nuclear fusion by inertial confinement: A comprehensive treatise edited by G Velarde, V Ronen and J M Martinz-val (C. R. C. Press, 1992) Ch. 3, p. 73

  47. K Eidmann, R F Schamatz and R Sigel, Phys. Fluids B2, 208 (1990)

    ADS  Google Scholar 

  48. S E Bodner, Comments Plasma Phys. Controlled Fusion 16, 351 (1995)

    Google Scholar 

  49. W C Mead, E K Stover, R L Kauffman, H N Kornblum and B F Lasinski, Phys. Rev. A38, 5275 (1988)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N.K., Godwal, B.K. Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas. Pramana - J Phys 59, 33–51 (2002). https://doi.org/10.1007/s12043-002-0031-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0031-6

Keywords

PACS Nos

Navigation