Skip to main content
Log in

Fragment production in 16O+80Br reaction within dynamical microscopic theory

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We analyze the formation of fragments in O—Br reaction at different incident energies between E/A=50 MeV and 200 MeV. This study is carried out within the quantum molecular dynamics (QMD) model coupled with recently advanced simulated annealing clusterization algorithm (SACA). For comparison, we also use the conventional minimum spanning tree (MST) method. Our detailed study shows that the SACA can detect the final stable fragment configuration as early as 60 fin/c which is marked by a dip in the heaviest fragment. On the other hand, the MST method needs several hundred fm/c to identify the final stable distribution. A comparison of the charge distribution with experimental data shows that the SACA is able to reproduce the data very nicely whereas (as reported earlier) the MST method fails to break the spectator matter into intermediate mass fragments. Furthermore, our results with SACA method indicate the onset of multi-fragmentation around 75 MeV/A which is again in good agreement with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C A Ogilvie et al, Phys. Rev. Lett. 67, 1214 (1991)

    Article  ADS  Google Scholar 

  2. M B Tsang et al, Phys. Rev. Lett. 71, 1502 (1993)

    Article  ADS  Google Scholar 

  3. R T de Souza et al, Phys. Lett. B268, 6 (1991)

    ADS  Google Scholar 

  4. C Williams et al, Phys. Rev. C55, R2132 (1997)

  5. M Begemann-Blaich et al, Phys. Rev. C48, 610 (1993)

    ADS  Google Scholar 

  6. G F Peaslee et al, Phys. Rev. C49, R2271 (1994)

  7. K Hagel et al, Phys. Res. Lett. 68, 2141 (1992)

    Article  ADS  Google Scholar 

  8. N T B Stone et al, Phys. Rev. Lett. 78, 2084 (1997)

    Article  ADS  Google Scholar 

  9. A Schuettauf et al, Nucl. Phys. A607, 457 (1996)

    ADS  Google Scholar 

  10. B Jakobsson et al, Nucl. Phys. A509, 195 (1990)

    ADS  Google Scholar 

  11. H W Barz et al, Nucl. Phys. A548, 427 (1992); A531, 453 (1991)

    ADS  Google Scholar 

  12. J Aichelin, Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  13. R K Puri, C Hartnack and J Aichelin, Phys. Rev. C54, R28 (1996)

  14. R K Puri and J Aichelin, J. Comput. Phys. 162, 245 (2000)

    Article  MATH  ADS  Google Scholar 

  15. S Kumar and R K Puri, Phys. Rev. C58, 320 (1998); C58, 2858 (1998)

    ADS  Google Scholar 

  16. S Kumar, R K Puri and J Aichelin, Phys. Rev. C58, 1618 (1998)

    ADS  Google Scholar 

  17. J Singh and R K Puri, Phys. Rev. C62, 044617 (2000)

    ADS  Google Scholar 

  18. S Kumar and R K Puri, Phys. Rev. C60, 054607 (1999)

    ADS  Google Scholar 

  19. J Singh, S Kumar and R K Puri, Phys. Rev. C63, 054603 (2001)

    ADS  Google Scholar 

  20. P B Gossiaux, D Keane, S Wang and J Aichelin, Phys. Rev. C51, 3357 (1995)

    ADS  Google Scholar 

  21. S R Souza, L de Paula, S Leray, J Nemeth, C Ngô and H Ngô, Nucl. Phys. A571, 159 (1994)

    ADS  Google Scholar 

  22. R Donangelo and S R Souza, Phys. Rev. C52, 326 (1995)

    ADS  Google Scholar 

  23. S Leray, C Ngô, P Bouissou, B Remaud and F Sebille, Nucl. Phys. A531, 177 (1991)

    ADS  Google Scholar 

  24. H W Barz, J P Bondorf, D Idier and I N Mishustin, Phys. Lett. B382, 343 (1996)

    ADS  Google Scholar 

  25. Li Zhuxia, C Hartnack, H Stöcker and W Greiner, Phys. Rev. C44, 824 (1991)

    ADS  Google Scholar 

  26. W Bauer et al, Phys. Rev. C47, R1838 (1993)

  27. B Jouault, G Royer, J F Lecolley, F Sebille and F Haddad, Nucl. Phys. A615, 82 (1997)

    ADS  Google Scholar 

  28. J Singh and R K Puri, Phys. Lett. B519, 46 (2001)

    ADS  Google Scholar 

  29. J Singh and R K Puri, Phys. Rev. C65, 024602 (2002) (in press)

    ADS  Google Scholar 

  30. J P Bondorf, R Donangelo, I N Mishustin and H Schulz, Nucl. Phys. A444, 460 (1985)

    ADS  Google Scholar 

  31. S Pal, S K Samaddar, A Das and J N De, Phys. Lett. B337, 14 (1994)

    ADS  Google Scholar 

  32. W Bauer, G F Bertsch and H Schulz, Phys. Rev. Lett. 69, 1888 (1987)

    Article  ADS  Google Scholar 

  33. Y G Ma and W Q Shen, Phys. Rev. C51, 710 (1995)

    ADS  Google Scholar 

  34. J Konopka, Ph.D. thesis (University of Frankfurt, Germany, 1995) (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puri, R.K., Singh, J. & Kumar, S. Fragment production in 16O+80Br reaction within dynamical microscopic theory. Pramana - J Phys 59, 19–31 (2002). https://doi.org/10.1007/s12043-002-0030-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-002-0030-7

Keywords

PACS Nos

Navigation