Advertisement

Pramana

, Volume 57, Issue 1, pp 67–73 | Cite as

Spallation reactions studied with 4π-detector arrays

Invited Papers Nuclear Reactiory

Abstract

Recently here has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations (compression, rotation, deformation) unavoidable when using massive projectiles. Such nuclei provide an ideal testbench for probing their decay as a function of excitation energy. In these investigations, 4π-detector arrays for charged particles and neutrons play a major role in the event-by-event sorting according to the excitation energy of the nucleus.

Spallation reactions induced on heavy nuclei allow the conversion of the incident GeV proton into several tens of evaporated neutrons. The neutron production in thick targets has been investigated in great detail thanks to the use of high efficiency neutron detector arrays. When scattered on samples of inert or biological materials, these neutrons can be used to study details of the material structure. They could also be utilized for the transmutation of long-lived nuclear wastes or for the feeding of sub-critical nuclear reactors.

The role of different types of multi-detector arrays is highlighted in this paper. Several references are also given for different uses of high efficiency neutron detectors in other contexts.

Keywords

Spallation reactions hot nuclei neutron production multi-detector arrays 

PACS Nos

25.40.Sc 24.10.-i 29.25.Dz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L Pienkowski et al, Phys. Lett. B336, 147 (1994)ADSGoogle Scholar
  2. [2]
    X Ledoux et al, Phys. Rev. C57, 2375 (1998)ADSGoogle Scholar
  3. [3]
    M Enke et al, Nucl. Phys. A657, 317 (1999)ADSGoogle Scholar
  4. [4]
    E C Pollacco et al, Phys. Lett. B482, 349 (2000)ADSGoogle Scholar
  5. [5]
    F Goldenbaum et al, Phys. Rev. Lett. 77, 1230 (1996)CrossRefADSGoogle Scholar
  6. [6]
    L Pienkowski et al, Phys. Lett. B472, 15 (2000)ADSGoogle Scholar
  7. [7]
    U Jahnke et al, Phys. Rev. Lett. 83, 4959 (1999)CrossRefADSGoogle Scholar
  8. [8]
    B Lott et al, Phys. Rev. C63, 034616 (2001)ADSGoogle Scholar
  9. [9]
    T von Egidy et al, Europhys. J. A8, 197 (2000)ADSGoogle Scholar
  10. [10]
    T Lefort et al, Phys. Rev. Lett. 83, 4033–4036 (1999)CrossRefADSGoogle Scholar
  11. [11]
    ISIS facility, Ann. Rep. 1998–1999 and http://www.isis.rl.ac.uk/Google Scholar
  12. [12]
    See for instance the web site: http://www.psi.ch/sinqGoogle Scholar
  13. [13]
    The European Spallation Source Study, The ESS Technical Study, report ESS-96-53-M (1996) ISBN 0902376659, vol. IIIGoogle Scholar
  14. [14]
    http://www.sns.gov/aboutsns/baseline.htmGoogle Scholar
  15. [15]
    C D Bowman et al, Nucl. Instrum. Methods Phys. Res. A320, 336 (1992)ADSGoogle Scholar
  16. [16]
    C Rubbia et al, Report No. CERN/AT/95-44(ET) (1995)Google Scholar
  17. [17]
    L Pienkowski et al, Phys. Rev. C56, 1909 (1997)ADSGoogle Scholar
  18. [18]
    D Hilscher et al, Nucl. Instrum. and Methods A414, 100 (1998)Google Scholar
  19. [19]
    B Lott et al, Nucl. Instrum. and Methods A414, 117 (1998)Google Scholar
  20. [20]
    A Letourneau et al, Nucl. Instum. and Methods B170, 299 (2000)CrossRefADSGoogle Scholar
  21. [21]
    J Cugnon, Nucl. Phys. A462, 751 (1987)ADSGoogle Scholar
  22. [22]
    J Cugnon, C Volant and S Vuillier, Nucl. Phys. A620, 475 (1997)ADSGoogle Scholar
  23. [23]
    J Cugnon, S Leray, E Martinez, Y Patin and S Vuillier, Phys. Rev. C56, 2431 (1997)ADSGoogle Scholar
  24. [24]
    D Jacquet et al, Nucl. Phys. A445, 140 (1985)ADSGoogle Scholar
  25. [25]
    D Jacquet et al, Phys. Rev. C32, 1594 (1985)ADSGoogle Scholar
  26. [26]
    E Schwinn et al, Nucl. Phys. A568, 169 (1994)ADSGoogle Scholar
  27. [27]
    B Quednau et al, Nucl. Phys. A606, 538 (1996)ADSGoogle Scholar
  28. [28]
    E Piasecki et al, Phys. Lett. B351, 412 (1995)ADSGoogle Scholar
  29. [29]
    S Bresson et al, Phys. Lett. B294, 33 (1992)ADSGoogle Scholar
  30. [30]
    D Polster et al, Phys. Rev. C51, 1167 (1995)ADSGoogle Scholar
  31. [31]
    A Letourneau et al, to be publishedGoogle Scholar
  32. [32]
    B Lott et al, Z. Phys. A36, 201 (1993)Google Scholar
  33. [33]
    J Galin and U Jahnke, J. Phys. G: Nucl. Part. Phys. 20, 1105 (1994)CrossRefADSGoogle Scholar
  34. [34]
    Y Périer et al, Nucl. Instrum. and Methods, A413, 312 (1998)Google Scholar
  35. [35]
    F Goldenbaum, A description of the Berlin Si ball, PhD thesis (HMI Berlin, 1996) unpublishedGoogle Scholar
  36. [36]
    www.ati.ac.at/austron/Google Scholar
  37. [37]
    http://www.jaeri.go.jp/genken/press/990707/ho_e.htmlGoogle Scholar
  38. [38]
    S Nagamiya, JAERI-KEK joint project on high intensity proton accelerator, 9th International Conference on Radiation Shielding Oct. 17–22 (Tsukuba, Japan, 1999)Google Scholar
  39. [39]
    Y Périer et al, Phys. Lett. B459, 55 (1999)ADSGoogle Scholar
  40. [40]
    E Liénard et al, Nucl. Instrum. and Methods A413, 321 (1998)Google Scholar
  41. [41]
    J Galin et al, Z. Phys. A311, 63 (1988)Google Scholar
  42. [42]
    M Morjean et al, Nucl. Phys. A524, 179 (1991)ADSGoogle Scholar
  43. [43]
    P Figuera et al, Z. Phys. A352, 315 (1995)Google Scholar
  44. [44]
    E Piasecki et al, Phys. Lett. B377, 235 (1996)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • J Galin
    • 1
  1. 1.Grand Accélérateur National d’Ions Lourds (GANIL)Caen cedex 05France

Personalised recommendations