Advertisement

Pramana

, Volume 57, Issue 1, pp 11–20 | Cite as

Physics at the closed shells

  • G de France
Invited Papers Nuclear Spectroscopy

Abstract

Radioactive beams obtained via fragmentation of the projectile on a primary target have shown to be a powerful tool to produce exotic nuclei and some typical results obtained at GANIL in this area will be shown. To go further, and in particular, to get beams of exotic nuclei, new facilities have been developed recently. The physics expected from the use of these radioactive ion beam facilities is extremely ambitious as stated in the scientific motivations justifying their construction. At GANIL the SPIRAL facility is ready and will hopefully deliver the first radioactive beams in 2001. New experimental devices have been developed to fully exploit the potentiality expected from SPIRAL. EXOGAM is a new, efficient and powerful gamma ray spectrometer currently under installation at GANIL. The design and the performances expected from this array will be discussed.

Keywords

Gamma-ray spectroscopy magic numbers exotic nuclei EXOGAM 

PACS Nos

21.10.Hw 21.10.Re 23.20.Lv 29.30.Kv 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y T Oganessian et al, Phys. Rev. Lett. 83, 3154 (1999)CrossRefADSGoogle Scholar
  2. [2]
    Y T Oganessian et al (private communication)Google Scholar
  3. [3]
    V Ninov et al, Phys. Rev. Lett. 83, 1104 (1999)CrossRefADSGoogle Scholar
  4. [4]
    K Rutz et al, GSI Annual Report, (1999) 38Google Scholar
  5. [4a]
    M Bender et al, in preparationGoogle Scholar
  6. [5]
    M Lewitowicz et al, Phys. Lett. B332, 20 (1994)ADSGoogle Scholar
  7. [6]
    R Schneider et al, Z. Phys. A348, 241 (1994)Google Scholar
  8. [7]
    B Blank et al, Phys. Rev. Lett. 84, 1116 (2000)CrossRefADSGoogle Scholar
  9. [8]
    Ch Engelmann et al, Z. Phys. A352, 351 (1995)Google Scholar
  10. [9]
    G Muenzenberg et al, Z. Phys. A322, 227 (1985)Google Scholar
  11. [10]
    M Leino et al, Europhys. J. A6, 63 (1999)ADSGoogle Scholar
  12. [11]
    P Reiter et al, Phys. Rev. Lett. 82, 509 (1999)CrossRefADSGoogle Scholar
  13. [12]
    I Muntian, Z Patyk and A Sobiczewski et al, GSI Annual Report, (1999) 39Google Scholar
  14. [13]
    R Grzywacz et al, Phys. Rev. C55, 1 (1997)ADSGoogle Scholar
  15. [14]
    J M Daugas et al, Phys. Lett. B476, 213 (2000)ADSGoogle Scholar
  16. [15]
    Sinatkas et al, J. Phys. G: Nucl. Part. Phys. 18, 1377, 1401 (1992)CrossRefADSGoogle Scholar
  17. [16]
    R Grzywacz et al, Phys. Rev. Lett. 81, 766 (1998)CrossRefADSGoogle Scholar
  18. [17]
    M Gorska et al, Phys. Rev. Lett. 79, 2415 (1997)CrossRefADSGoogle Scholar
  19. [18]
    W Nazarewicz et al, Nucl. Phys. A435, 397 (1985)ADSGoogle Scholar
  20. [19]
    R Bengtsson, Nuclear structure of the zirconium region (Springer, 1985) 17Google Scholar
  21. [20]
    N Fukunishi et al, Phys. Lett. B296, 279 (2000)ADSGoogle Scholar
  22. [21]
    M J Lopez, PhD thesis, GANIL T 00 01Google Scholar
  23. [22]
    G Duchêne et al, NIM A432, 90 (1999)CrossRefADSGoogle Scholar
  24. [23]
    J Simpson et al, Heavy ion physics 11, 159–188 (2000)Google Scholar

Copyright information

© Indian Academy of Sciences 2001

Authors and Affiliations

  • G de France
    • 1
  1. 1.Grand Accélérateur National d’Ions Lourds (GANIL)Caen Cedex 5France

Personalised recommendations