Skip to main content
Log in

Unpolarized structure functions and the parton distributions for nucleon in an independent quark model

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Considering the nucleon as consisting entirely of its valence quarks confined independently in a scalar-vector harmonic potential; unpolarized structure functions F 1(x, μ 2) and F 2(x, μ 2) are derived in the Bjorken limit under certain simplifying assumptions; from which valence quark distribution functions u v(x, μ 2) and d v(x, μ 2) are appropriately extracted satisfying the normalization constraints. QCD-evolution of these input distributions from a model scale of μ 2=0.07 GeV2 to a higher Q 2 scale of Q 20 =15 GeV2 yields xu v(x, Q 20 ) and xd v(x, Q 20 ) in good agreement with experimental data. The gluon and sea-quark distributions such as G(x, Q 20 ) and q s(x, Q 20 ) are dynamically generated with a reasonable qualitative agreement with the available data; using the leading order renormalization group equations with appropriate valence-quark distributions as the input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R G Roberts and M R Whalley, J. Phys. G17, D1 (1991)

  2. S R Mishra and F Sciulli, Ann. Rev. Nucl. Part. Sci. 39, 259 (1989) and the references therein

    Article  ADS  Google Scholar 

  3. J F Owens and W K Tung, Ann. Rev. Nucl. Part. Sci. 42, 291 (1992)

    Article  ADS  Google Scholar 

  4. A Milsztajn et al, Z. Phys. C49, 527 (1991) and the references therein

    Google Scholar 

  5. P Amaudruz et al. Phys. Rev. Lett. 66, 2712 (1991)

    Article  ADS  Google Scholar 

  6. T Sloan, G Smadja and R Voss, Phys. Rep. 162, 45 (1988)

    Article  ADS  Google Scholar 

  7. J J Aubert et al, Nucl. Phys. B293, 740 (1987) New Muon Collaboration: D Allasia et al, Report No. CERN-PPE/90-103 (1990)

    Article  ADS  Google Scholar 

  8. BCDMS collaboration: A C Benvenuti et al, Phys. Lett. B237, 599 (1990)

    ADS  Google Scholar 

  9. G Altarelli and G Parisi, Nucl. Phys. B126, 298 (1977)

    Article  ADS  Google Scholar 

  10. M Göckler et al, J. Phys. G22, 703 (1996)

    ADS  Google Scholar 

  11. R L Jaffe, Phys. Rev. D11, 1953 (1975)

    ADS  MathSciNet  Google Scholar 

  12. C J Benesh and G A Miller, Phys. Rev. D36, 1344 (1987)

    ADS  Google Scholar 

  13. C J Benesh and G A Miller, Phys. Rev. D38, 48 (1988)

    ADS  Google Scholar 

  14. X M Wang, X Song and P C Yin, Hadron J. 6, 985 (1983)

    Google Scholar 

  15. X M Wang, Phys. Lett. B140, 413 (1984)

    ADS  Google Scholar 

  16. X Song and J S Mc Carthy, Phys. Rev. D49 3169 (1994); C46, 1077 (1992)

    ADS  Google Scholar 

  17. H Meyer and P J Mulders, Nucl. Phys. A528, 589 (1991)

    ADS  Google Scholar 

  18. M Traini, L Conci and U Moschella, Nucl. Phys. A544, 731 (1992)

    ADS  Google Scholar 

  19. A W Schreiber, A I Signal and A W Thomas, Phys. Rev. D44, 2653 (1991)

    ADS  Google Scholar 

  20. M R Bate and A I Signal, J. Phys. G18, 1875 (1992)

    ADS  Google Scholar 

  21. T N Pham, Phys. Rev. D19, 707 (1979)

    ADS  Google Scholar 

  22. A Dhaul, A N Mitra and A Pagnamenta, Z. Phys. C36, 115 (1987)

    ADS  Google Scholar 

  23. M V Terentev, Yad. Fiz. Sov. J. Nucl. Phys. 24, 207 (1976); 106 (1976)

    Google Scholar 

  24. Z Dziembowski, C J Martoff and P. Zyla, Phys. Rev. D50, 5613 (1994)

    ADS  Google Scholar 

  25. H J Weber, Phys. Rev. D49, 3160 (1994)

    ADS  Google Scholar 

  26. R P Bickerstaff and J L Londergan, Phys. Rev. 42, 3621 (1990)

    ADS  Google Scholar 

  27. M Stratmann, Z. Phys. C60, 763 (1993)

    ADS  Google Scholar 

  28. N Barik, B K Dash and M Das, Phy. Rev. D31, 1652 (1985); D32, 1725 (1985)

    ADS  Google Scholar 

  29. N Barik and B K Dash, Phy. Rev. D34, 2092, 2803 (1986), D33, 1925 (1986)

    ADS  Google Scholar 

  30. N Barik, B K Dash and P C Dash, Pramana — J. Phys. 29, 543 (1987)

    ADS  Google Scholar 

  31. N Barik, P C Dash and A R Panda, Phys. Rev. D46, 3856 (1992); D47, 1001 (1993)

    ADS  Google Scholar 

  32. N Barik and P C Dash, Phys. Rev. D47, 2788 (1993); D53, 1366 (1996)

    ADS  Google Scholar 

  33. N Barik, S Tripathy, S Kar and P C Dash, Phys. Rev. D56, 4238 (1997)

    ADS  Google Scholar 

  34. N Barik, S Kar and P C Dash, Phys. Rev. D57, 405 (1998)

    ADS  Google Scholar 

  35. N Barik et al, Phys. Rev. D59, 037301 (1999)

    ADS  Google Scholar 

  36. N Barik, B K Dash and A R Panda, Nucl. Phys. A605, 433 (1996)

    ADS  Google Scholar 

  37. N Barik and R N Mishra, Phys. Rev. D61, 014002 (2000)

    ADS  Google Scholar 

  38. G Parisi and R Petronzio, Phys. Lett. B62, 331 (1976)

    ADS  Google Scholar 

  39. V A Novikov, M A Shifman, A I Vainstein and V I Zakharov, JETP Lett. 24, 341 (1976); Ann.Phys. 105, 276 (1977)

    ADS  Google Scholar 

  40. M Gluck and E Reya, Nucl. Phys. B130, 76 (1977)

    Article  ADS  Google Scholar 

  41. M Gluck, R M Godbole and E Reya, Z. Phys. C41, 667 (1989)

    Google Scholar 

  42. Callen Gross relation is satisfied in the model here, since it can be shown that W (S)00 (x, Q 2) is finite in the Bjorken limit as \(W_{00}^s = \frac{{MN_q^2 r_{0q}^2 }}{8}[(1 + \frac{1}{{\lambda _q^2 r_{0q}^2 }} + \frac{{K_ + ^2 }}{{\lambda _q^2 }} + \frac{{2K_ + }}{{\lambda _q }})e - r_{0q}^2 K_ + ^2 - (K_ + \to K\_)]\)

  43. M R Pennington and G G Ross, Phys. Lett. B86, 371 (1979)

    ADS  Google Scholar 

  44. A J Buras, Rev. Mod. Phy. 52, 199 (1980)

    Article  ADS  Google Scholar 

  45. Richard D Field, in Application of perturbative-QCD (Addison-Wesley, New York, 1989) p.148

    Google Scholar 

  46. M Arneodo et al, Phys. Rev. D50, R1 (1994)

  47. P Amadruz et al, Phys. Rev. Lett. 66, 2712 (1991)

    Article  ADS  Google Scholar 

  48. NA51 Collaboration: A Baldit et al, Phys. Lett. B332, 244 (1994)

    ADS  Google Scholar 

  49. Fermilab E866/NuSea Collaboration: E A Hawker, et al. Phys. Rev. Lett. 80, 3715 (1998)

    Article  ADS  Google Scholar 

  50. CCFR Collaboration: A O Bazarko et al, Z Phys. C65, 189 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barik, N., Mishra, R. Unpolarized structure functions and the parton distributions for nucleon in an independent quark model. Pramana - J Phys 56, 519–536 (2001). https://doi.org/10.1007/s12043-001-0101-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0101-1

Keywords

PACS Nos

Navigation