Skip to main content
Log in

Photon transport in thin disordered slabs

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We examine using Monte Carlo simulations, photon transport in optically ‘thin’ slabs whose thickness L is only a few times the transport mean free path l*, with particles of different scattering anisotropies. The confined geometry causes an auto-selection of only photons with looping paths to remain within the slab. The results of the Monte Carlo simulations are borne out by our analytical treatment that incorporates directional persistence by the use of the Ornstein-Uhlenbeck process, which interpolates between the short time ballistic and long time diffusive regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A Yodh and B Chance, Phys. Today 51, 34 (1995)

    Google Scholar 

  2. Akira Ishimaru, Wave propagation and scattering in random media (Academic, New York, 1978) vols 1 and 2

    Google Scholar 

  3. D J Pine, D A Weitz, J X Zhu and E Herbolzheimer, J. Phys. (Paris) 51, 2101 (1990)

    Google Scholar 

  4. K M Yoo, F Liu and R R Alfano, Phys. Rev. Lett. 64, 2647 (1990)

    Article  ADS  Google Scholar 

  5. D J Durian and J Rudnick, J. Opt. Soc. Am. A14, 235 (1997)

    Article  ADS  Google Scholar 

  6. S Anantha Ramakrishna and N Kumar, Phys. Rev. E60, 1381 (1999)

    ADS  Google Scholar 

  7. M Boguñá, J M Porrà and J Masoliver, Phys. Rev. E58, 6992 (1998)

    ADS  Google Scholar 

  8. R H J Kop, P de Vries, R Sprik and A Lagendijk, Phys. Rev. Lett. 79, 4369 (1997)

    Article  ADS  Google Scholar 

  9. C F Bohren and D R Huffman, Absorption and scattering of light by small particles, Appendix-A (Wiley Interscience, New York, 1983). Also available by anonymous ftp from ftp://astro.princeton.edu/draine/scat/bhmie

    Google Scholar 

  10. W H Press, S A Teukolsky, W T Vetterling and B P Flannery, Numerical recipes in FORTRAN — The art of scientific computing (Cambridge 1992)

  11. D J Durian, Phys. Rev. E51, 3350 (1995)

    ADS  Google Scholar 

  12. A Lagendijk, R Vreeker and P de Vries, Phys. Lett. A136, 81 (1989)

    ADS  Google Scholar 

  13. K A Kaplan, M H Kao, A Yodh and D J Pine, Appl. Opt. 32, 3828 (1993)

    ADS  Google Scholar 

  14. M Ospeck and S Fraden, Phys. Rev. E49, 4578 (1994)

    ADS  Google Scholar 

  15. J X Zhu, D J Pine and D A Weitz, Phys. Rev. E44, 3948 (1991)

    ADS  Google Scholar 

  16. S Chandrasekhar in Selected papers on noise and stochastic processes edited by Nelson Wax (Dover, New York, 1954)

    Google Scholar 

  17. J M Porrà, J Masoliver and G H Weiss, Phys. Rev. E55, 7771 (1997)

    ADS  Google Scholar 

  18. L T Perelman, J Wu, I Itzkan and M S Feld, Phys. Rev. Lett. 72, 1341 (1994)

    Article  ADS  Google Scholar 

  19. P M Morse and H Feshbach, Methods of theoretical physics (McGraw Hill, New York, 1953) vol. I

    MATH  Google Scholar 

  20. W Feller, An introduction to probability theory and its applications (Wiley, New York, 1950) vol. I

    MATH  Google Scholar 

  21. T W Burkhardt, J. Phys. A26, L1157 (1993)

  22. P A Lemieux, M U Vera and D J Durian, Phys. Rev. E57, 4498 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, V., Ramakrishna, S.A., Sood, A. et al. Photon transport in thin disordered slabs. Pramana - J Phys 56, 767–778 (2001). https://doi.org/10.1007/s12043-001-0077-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0077-x

Keywords

PACS Nos

Navigation