Skip to main content
Log in

Recent studies in heavy ion induced fission reactions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus-nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes — the tilting mode depends on the K quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high K values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W D Myers, Droplet model of atomic nuclei, IFI/plenum dataco., New York, 1977

    Google Scholar 

  2. A J Sierk, Phys. Rev. C33 2039 (1986)

    ADS  Google Scholar 

  3. BARMOM, 9677, National Energy Software Centre, Argonne National Laboratory, Argonne, IL 60439

  4. M Abe, KEKPreprint 86-26, KEK TH-28 (1986)

  5. A Saxena, A Chatterjee, R K Choudhury, S S Kapoor and D M Nadkarni, Phys. Rev. C49, 932 (1994)

    ADS  Google Scholar 

  6. K Kumar, R K Choudhury and A Saxena, Pramana — J. Phys. 42, 123 (1994)

    ADS  Google Scholar 

  7. S S Kapoor, Super heavy elements, Science and Culture, May (1972) p. 224, and reference therein

  8. V S Ramamurthy, S S Kapoor and S K Kataria Phys. Rev. Lett. 25, 386 (1970)

    Article  ADS  Google Scholar 

  9. A Shrivastava, S Kailas, A Chatterjee, A M Samant, A Navin, P Singh and B S Tomar Phys. Rev. Lett. 82, 699 (1999)

    Article  ADS  Google Scholar 

  10. R Vandenbosch, Ann. Rev. Nucl. Part. Sci. 42, 447 (1992)

    Article  ADS  Google Scholar 

  11. N Rowley, G R Satchler and P H Stelson, Phys. Lett. B254, 25 (1991)

    ADS  Google Scholar 

  12. J X Wei, J R Leigh, D J Hinde, J O Newton, R C Lemmon, S Elfstrom, J X Chen and R Rowley, Phys. Rev. Lett. 67, 3368 (1991)

    Article  ADS  Google Scholar 

  13. H Timmer, M Dasgupta, D J Hinde, J R Leigh, R C Lemmon, J C Mein, C R Morton, J O Newton and N Rowley, Nucl. Phys. A584, 190 (1995)

    ADS  Google Scholar 

  14. N Rowley, H Timmers, J R Leigh, M Dasgupta, D J Hinde, J C Mein, C R Morton and J O Newton, Phys. Lett. B373, 23 (1996)

    ADS  Google Scholar 

  15. J C Mein, C R Morton and J O Newton, Phys. Lett. B373, 23 (1996)

    ADS  Google Scholar 

  16. R Varma, Shrabani Sinha, B K Nayak, R G Thomas, A Saxena, D C Biswas, L M Pant, D M Nadkarni, R K Choudhury and P Bhattacharya, Phys. Rev. C57, 3462 (1998)

    ADS  Google Scholar 

  17. D Hilscher, H Rossner, B Cramer, B Gebauer, U Jahnke, M Lehmann, E Schwinn, M Wilpert, T Wilpert, H Frobeen, E Mordhorst and M Wilpert, Phys. Rev. Lett. 62, 1099 (1989)

    Article  ADS  Google Scholar 

  18. D J Hinde, D Hilscher, H Rossner, B Gebauer, M Lehmann and M Wilpert, Phys. Rev. C45, 1229 (1992)

    ADS  Google Scholar 

  19. A Gavron, A Gayer, J Boissevin, H C Britt, J R Nix, A J Sierk, P Grange, S Hassani, H A Weidernmuller, J R Beene, F Plasil, G R Young, G A Petitt and C Bulter, Phys. Lett. B176, 312 (1986)

    ADS  Google Scholar 

  20. H Rossner, D J Hinde, J R Leigh, J P Lestone, J O Newton, J X Wei and S Elfstrom, Phys. Rev. C45, 719 (1992)

    ADS  Google Scholar 

  21. A Bohr, Proc Int. Conf. on the peaceful uses of atomic energy, Geneva, 1955 (United Nations, New York, 1956) vol. 2, p. 131

    Google Scholar 

  22. I Halpern and V M Strutinsky, Proc. Int. Conf. on the peaceful uses of atomic energy (United Nations, New York, 1958) vol. 15, p. 408

    Google Scholar 

  23. R Vandenbosch, T Murakami, C C Sahm, D D Leach, A Ray and M J Murphy, Phys. Rev. Lett. 56, 1234 (1986)

    Article  ADS  Google Scholar 

  24. V S Ramamurthy and S S Kapoor, Phys. Rev. Lett. 54, 178 (1985)

    Article  ADS  Google Scholar 

  25. V S Ramamurthy and S S Kapoor, Phys. Rev. C32, 2182 (1985)

    ADS  Google Scholar 

  26. V S Ramamurthy, S S Kapoor, R K Choudhury, A Saxena, D M Nadkarni, A Mohanty, B K Nayak, S V Sastry, S Kailas, A Chatterjee, P Singh and A Navin, Phys. Rev. Lett. 65, 25 (1990)

    Article  ADS  Google Scholar 

  27. N Majumdar, P Bhattacharya, D C Biswas, R K Choudhury, D M Nadkarni and A Saxena, Phys. Rev. Lett. 77, 502 (1996)

    Article  ADS  Google Scholar 

  28. J C Mein, J O Newton and H Timmers, Phys. Rev. C55, R995 (1997)

  29. D J Hinde, M Dasgupta, J R Leigh, J P Lestone, J C Mein, C R Morton, J O Newton and H Timmers, Phys. Rev. Lett. 74, 1295 (1995)

    Article  ADS  Google Scholar 

  30. J P Lestone, A A Sonozogni, M P Kelly and R Vandenbosch, Phys. Rev. C56, R2907 (1997)

  31. D Vorkapic and B Ivanisevic, Phys. Rev. C52, 1980 (1995)

    ADS  Google Scholar 

  32. H Hoffmann and J R Nix, Phys. Lett. B122, 117 (1983)

    ADS  Google Scholar 

  33. R K Choudhury and S S Kapoor, PINSA special volume on accelerator based research edited by S S Kapoor, vol. 66 (2000)

  34. R P Schmitt, G Mouchaty, D R Haenni and P Bogucki, Phys. Lett. B127, 327 (1983)

    ADS  Google Scholar 

  35. F A Dilmanian, L Grozins, J W Ball, M Beckerman, R Boisseau, S Gazes, R Ledoux and A Sperduto, Phys. Lett. B127, 172 (1983)

    ADS  Google Scholar 

  36. R Bock, Y T Chu, M Dakowski, A Gobbi, E Grosse, A Olmi, H Sann, D Schwalm, U Lynen, W Muller, S Bjornholm, E Esbensen, W Wolfi and E Morenzoni, Nucl. Phys. A388, 334 (1982)

    ADS  Google Scholar 

  37. B B Back, S Bjornholm, T Dossing, W Q Shen, K D Hildernbrand, A Gobbi and S P Sorensen, Phys. Rev. C41, 1495 (1990)

    ADS  Google Scholar 

  38. D V Shetty, R K Choudhury, B K Nayak, D M Nadkarni and S S Kapoor, Phys. Rev. C56, 868 (1997)

    ADS  Google Scholar 

  39. D V Shetty, R K Choudhury, B K Nayak, D M Nadkarni and S S Kapoor, Phys. Rev. C58, R616 (1998)

  40. L G Moretto and R P Schmitt, Phys. Rev. C21, 204 (1980)

    ADS  Google Scholar 

  41. R P Schmitt and A J Pacheco, Nucl. Phys. A379, 313 (1982)

    ADS  Google Scholar 

  42. S Ayik, G Wolschin and W Noernberg, Z. Phys. A286, 271 (1978)

    Google Scholar 

  43. R K Schmitt, L Cooke, H Dejbaksh, D R Haenni, T Shutt, B K Srivastava and H Utsunomiya, Nucl. Phys. A592, 130 (1995)

    ADS  Google Scholar 

  44. D V Shetty, R K Choudhury, B K Nayak, D M Nadkarni and S S Kapoor, Phys. Rev. (1999) (submitted)

  45. A Ya Rusanov, M G Itkis and V N Okolovich, Phys. of Atomic Nuclei, 60, 683 (1997)

    ADS  Google Scholar 

  46. L M Pant, R K Choudhury, Alok Saxena and D C Biswas, submitted to Euro. Phys. (2001)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, R. Recent studies in heavy ion induced fission reactions. Pramana - J Phys 57, 585–600 (2001). https://doi.org/10.1007/s12043-001-0064-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0064-2

Keywords

PACS No.

Navigation