Skip to main content
Log in

Multifragmentation and the phase transition: A systematic study of the multifragmentation of 1A GeV Au, La and Kr

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A systematic analysis of the multifragmentation (MF) in fully reconstructed events from 1A GeV Au, La and Kr collisions with C has been performed. Detailed comparisons of the various fragment properties are presented as a function of excitation energy, E*th. The charged particle multiplicity from MF stage shows a saturation beyond E*th ∼ 8 MeV/nucleon for Kr. The universal behavior of intermediate mass fragment yields and of the size of the largest fragment is observed only for Au and La when scaled with size of the system. The Kr data are found to lack this property. Moments of the fragment size distribution show that the Kr MF is different than the MF of Au and La. A power law behavior is observed for Au and La with exponent τ>2, while for Kr τ<2. The results are compared with the statistical multifragmentation model (SMM). A single value of all the parameters of the model fits the data for all the three systems. The breakup of Au and La is consistent with a continuous phase transition. The data indicate that both E*th and the isotope ratio temperature T Hc-DT decrease with increase in system size at the critical point. The breakup temperature obtained from SMM also shows the same trend as seen in data. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role. The percolation and Ising model studies for finite size neutral matter show behavior which is opposite to the one seen in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J E Finn et al, Phys. Rev. Lett. 49, 1321 (1982)

    Article  ADS  Google Scholar 

  2. R W Minich et al, Phys. Lett. B118, 458 (1982)

    ADS  Google Scholar 

  3. M E Fisher, Physica 3, 255 (1967)

    Google Scholar 

  4. N T Porile et al, Phys. Rev. C39, 1914 (1989)

    ADS  Google Scholar 

  5. M L Gilkes et al, Phys. Rev. Lett. 73, 1590 (1994)

    Article  ADS  Google Scholar 

  6. J A Hauger et al, Phys. Rev. Lett. 77, 235 (1996)

    Article  ADS  Google Scholar 

  7. J B Elliott et al, Phys. Lett. B381, 35 (1996)

    ADS  Google Scholar 

  8. J A Hauger et al, Phys. Rev. C57, 764 (1998)

    ADS  Google Scholar 

  9. J B Elliott et al, Phys. Lett. B418, 34 (1998)

    ADS  Google Scholar 

  10. B K Srivastava et al, Phy. Rev. C60, 064606 (1999)

    ADS  Google Scholar 

  11. J A Hauger et al, Phys. Rev. C62, 024616 (2000)

    ADS  Google Scholar 

  12. R P Scharenberg et al, submitted to Phys. Rev. C

  13. J Bondorf et al, Phys. Rep. 257, 133 (1995)

    Article  ADS  Google Scholar 

  14. D H E Gross, Phys. Rep. 279, 119 (1997)

    Article  ADS  Google Scholar 

  15. S Das Gupta and A Z Mekjian, Phys. Rev. C57, 1361 (1998)

    ADS  Google Scholar 

  16. S Das Gupta et al, Nucl. Phys. A621, 897 (1997)

    ADS  Google Scholar 

  17. J M Carmona et al, Nucl. Phys. A643, 115 (1998)

    ADS  Google Scholar 

  18. F Gulminelli and Ph Chomaz, Phys. Rev. Lett. 82, 1402 (1999)

    Article  ADS  Google Scholar 

  19. R P Scharenberg, Proceedings of the International Workshop XXVII on Gross Properties of Nuclei and Nuclear Excitations (Hirschegg, Austria, GSI 1999) p. 237

  20. B K Srivastava, Proceedings of the International Workshop XXVII on Gross Properties of Nuclei and Nuclear Excitations (Hirschegg, Austria, GSI 1999) p. 247

  21. Y Yariv and Z Frankel, Phys. Rev. C24, 488 (1981)

    ADS  Google Scholar 

  22. X Campi, Phys. Lett. B208, 351 (1988)

    ADS  Google Scholar 

  23. W Bauer et al, Nucl. Phys. A452, 699 (1986)

    ADS  Google Scholar 

  24. D Stauffer and A Aharony, Introduction to percolation theory (Taylor and Francis, London, 1992)

    Google Scholar 

  25. S Albergo et al, Nuovo Cimento A89, 1 (1985)

    Google Scholar 

  26. H R Jaqaman et al, Phys. Rev. C29, 2067 (1984)

    ADS  Google Scholar 

  27. S Levit and P Bonche, Nucl. Phys. A437, 426 (1985)

    ADS  Google Scholar 

  28. D W Heerman and D Stauffer, Z. Phys. B44, 339 (1981)

    Article  Google Scholar 

  29. J M Lattimer et al, Nucl. Phys. A432, 646 (1985)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

EOS Collaboration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, B. Multifragmentation and the phase transition: A systematic study of the multifragmentation of 1A GeV Au, La and Kr. Pramana - J Phys 57, 301–313 (2001). https://doi.org/10.1007/s12043-001-0040-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0040-x

Keywords

PACS Nos

Navigation