Skip to main content
Log in

A new slant on hadron structure

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Rather than regarding the restriction of current lattice QCD simulations to quark masses that are 5–10 times larger than those observed as a problem, we note that this presents a wonderful opportunity to deepen our understanding of QCD. Just as it has been possible to learn a great deal about QCD by treating N c as a variable, so the study of hadron properties as a function of quark mass is leading us to a deeper appreciation of hadron structure. As examples we cite progress in using the chiral properties of QCD to connect hadron masses, magnetic moments, charge radii and structure functions calculated at large quark masses within lattice QCD with the values observed physically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T D Cohen, hep-ph/9512275

  2. H Pagels, Phys. Rep. 16, 219 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. S Theberge, A W Thomas and G A Miller, Phys. Rev. D22, 2838 (1980)

    ADS  Google Scholar 

  4. A W Thomas, Adv. Nucl. Phys. 13, 1 (1984)

    Google Scholar 

  5. S Aoki et al, Phys. Rev. D60, 114508 (1999) [CP-PACS]

    ADS  Google Scholar 

  6. C R Allton et al, Phys. Rev. D60, 034507 (1999) [UKQCD]

    ADS  Google Scholar 

  7. D B Leinweber et al, Phys. Rev. D61, 074502 (2000); hep-lat/9906027

    ADS  Google Scholar 

  8. J Gasser, H Leutwyler and M E Sainio, Phys. Lett. B253, 252 (1991)

    ADS  Google Scholar 

  9. M Knecht, hep-ph/9912443

  10. SESAM Collaboration: S Gusken et al, Phys. Rev. D59, 054504 (1999)

    ADS  Google Scholar 

  11. D B Leinweber et al, Phys. Lett. B482, 109 (2000); hep-lat/0001007

    ADS  Google Scholar 

  12. D H Lu et al, in Proc. Int. Conf. Few Body Problems (Taipei, 2000), to appear in Nucl. Phys.

  13. D H Lu et al, Phys. Rev. C60, 068201 (1999); nucl-th/9807074

    ADS  Google Scholar 

  14. D B Leinweber and T D Cohen, Phys. Rev. D47, 2147 (1993); hep-lat/9211058

    ADS  Google Scholar 

  15. E J Hackett-Jones, D B Leinweber and A W Thomas, Phys. Lett. B494, 89 (2000); hep-lat/0008018

    ADS  Google Scholar 

  16. D B Leinweber, R M Woloshyn and T Draper, Phys. Rev. D43, 1659 (1991)

    ADS  Google Scholar 

  17. D B Leinweber et al, Phys. Rev. D60, 034014 (1999); hep-lat/9810005

    ADS  Google Scholar 

  18. E J Hackett-Jones, D B Leinweber and A W Thomas, Phys. Lett. B489, 143 (2000); hep-lat/0004006

    ADS  Google Scholar 

  19. D B Leinweber and A W Thomas, Phys. Rev. D62, 074505 (2000); hep-lat/9912052

    ADS  Google Scholar 

  20. D B Leinweber, A W Thomas and R D Young, hep-ph/0101211

  21. M Erdmann, Talk given at 8th International Workshop on Deep Inelastic Scattering and QCD (DIS 2000), Liverpool, England, 25–30 Apr. 2000, hep-ex/0009009

  22. E W Hughes and R Voss, Ann. Rev. Nucl. Part. Sci. 49, 303 (1999)

    Article  ADS  Google Scholar 

  23. A W Thomas, Phys. Lett. B126, 97 (1983)

    ADS  Google Scholar 

  24. E M Henley and G A Miller, Phys. Lett. B251, 453 (1990)

    ADS  Google Scholar 

  25. A I Signal, A W Schreiber and A W Thomas, Mod. Phys. Lett. A6, 271 (1991)

    ADS  Google Scholar 

  26. W Melnitchouk, A W Thomas and A I Signal, Z. Phys. A340, 85 (1991)

    Google Scholar 

  27. S Kumano, Phys. Rev. D43, 3067 (1991)

    ADS  Google Scholar 

  28. S Kumano and J T Londergan, Phys. Rev. D44, 717 (1991)

    ADS  Google Scholar 

  29. W-Y P Hwang, J Speth and G E Brown, Z. Phys. A339, 383 (1991)

    Google Scholar 

  30. P Amaudraz et al, Phys. Rev. Lett. 66, 2712 (1991)

    Article  ADS  Google Scholar 

  31. A Baldit et al, Phys. Lett. B332, 244 (1994)

    ADS  Google Scholar 

  32. E A Hawker et al, Phys. Rev. Lett. 80, 3715 (1998)

    Article  ADS  Google Scholar 

  33. A I Signal and A W Thomas, Phys. Lett. B191, 206 (1987)

    ADS  Google Scholar 

  34. X Ji and J Tang, Phys. Lett. B362, 182 (1995)

    Google Scholar 

  35. S J Brodsky and B-Q Ma, Phys. Lett. B381, 317 (1996)

    ADS  Google Scholar 

  36. W Melnitchouk and M Malheiro, Phys. Rev. C55, 431 (1997)

    ADS  Google Scholar 

  37. G Martinelli and C T Sachrajda, Phys. Lett. B196, 184 (1987); Nucl. Phys. B306, 865 (1988)

    ADS  Google Scholar 

  38. M Göckeler, R Horsley, E M Ilgenfritz, H Perlt, P Rakow, G Schierholz and A Schiller, Phys. Rev. D53, 2317 (1996)

    ADS  Google Scholar 

  39. M Göckeler, R Horsley, E M Ilgenfritz, H Perlt, P Rakow, G Schierholz and A Schiller, Nucl. Phys. Proc. Suppl. 53, 81 (1997)

    Article  ADS  Google Scholar 

  40. C Best et al, hep-ph/9706502

  41. D Dolgov et al, hep-lat/0011010

  42. A W Thomas, W Melnitchouk and F M Steffens, Phys. Rev. Lett. 85, 2892 (2000)

    Article  ADS  Google Scholar 

  43. W Detmold et al, to be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detmold, W., Leinweber, D.B., Melnitchouk, W. et al. A new slant on hadron structure. Pramana - J Phys 57, 251–261 (2001). https://doi.org/10.1007/s12043-001-0036-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0036-6

Keywords

PACS Nos

Navigation