Skip to main content
Log in

Dielectric relaxation phenomena of rigid polar liquid molecules under giga hertz electric field

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The dielectric relaxation phenomena of rigid polar liquid molecules chloral and ethyltrichloroacetate (j) in benzene, n-hexane and n-heptane (i) under 4.2, 9.8 and 24.6 GHz electric fields at 30°C are studied to show the possible existence of double relaxation times τ 2 and τ 1 for rotations of the whole and the flexible parts of molecules. The probability of showing double relaxation is more in aliphatic solvents indicating their nonrigidity. The symmetric and asymmetric distribution parameters γ and δ are obtained from X ij /X 0ij and X ij /X 0ij and w j →0 where X ij and X ij are real and imaginary parts of the complex orientational susceptibility X * i and X 0ij is the low frequency susceptibility which is real. X ij ’s are involved with the measured dielectric relative permittivities ε ij , ε in , ε 0ij and ε ∞ij of solutions. The theoretical weighted contributions c 1 and c 2 towards dielectric dispersions by Fröhlich’s method are compared with the experimental ones obtained from the graphical variation of X ij /X 0ij and X ij /X 0ij with weight fractions w j ’s at w j → 0. The measured dipole moments μ 2 and μ 1 of the whole and the flexible part of a polar molecule in terms of the linear coefficients β’s of X ij ’s with w j ’s and the estimated τ 2 and τ 1 reveal their associations with aliphatic solvents. The theoretical dipole moments μ theo’s from the available bond angles and bond moments of the substituent polar groups of the molecules with the estimated μ’s suggest the mesomeric, inductive and electromeric effects in them under GHz electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A K Sharma, D R Sharma and D S Gill, J. Phys. D18, 1199 (1985)

    ADS  Google Scholar 

  2. A Sharma and D R Sharma, J. Phys. Soc. Jpn. 61, 1049 (1992)

    Article  ADS  Google Scholar 

  3. K S Cole and R H Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  4. D W Davidson and R H Cole, J. Chem. Phys. 19, 1484 (1951)

    Article  ADS  Google Scholar 

  5. K V Gopalakrishna, Trans. Faraday Soc. 53, 767 (1957)

    Article  Google Scholar 

  6. U Saha, S K Sit, R C Basak and S Acharyya, J. Phys. D27, 596 (1994)

    ADS  Google Scholar 

  7. S K Srivastava and S L Srivastava, Indian J. Pure Appl. Phys. 13, 179 (1975)

    Google Scholar 

  8. A D Franklin, W M Heston, E J Hennelly and C P Smyth, J. Am. Chem. Soc. 72, 3447 (1950)

    Article  Google Scholar 

  9. K Dutta, R C Basak, S K Sit and S Acharyya, J. Molecular Liquids 88, 229 (2000)

    Article  Google Scholar 

  10. A K Jonscher, Physics of dielectric solids, invited papers edited by C H L Goodman (1980) p. 7

  11. A Budo, Phys. Z. 39, 706 (1938)

    Google Scholar 

  12. K Bergmann, D M Roberti and C P Smyth, J. Phys. Chem. 64, 665 (1960)

    Article  Google Scholar 

  13. A Mansing and P Kumar, J. Phys. Chem. 69, 4197 (1965)

    Article  Google Scholar 

  14. H Fröhlich, Theory of dielectrics (Oxford University Press, Oxford, 1949) p. 94

    Google Scholar 

  15. J Bhattacharyya, A Hasan, S B Roy and G S Kastha, J. Phys. Soc. Jpn. 28, 204 (1970)

    Article  ADS  Google Scholar 

  16. K Higasi, Y Koga and M Nakamura, Bull. Chem. Soc. Jpn. 44, 988 (1971)

    Article  Google Scholar 

  17. S K Sit, R C Basak, U Saha and S Acharyya, J. Phys. D27, 2194 (1994)

    ADS  Google Scholar 

  18. S K Sit and S Acharyya, Indian J. Phys. B70, 19 (1996)

    Google Scholar 

  19. S K Sit, N Ghosh and S Acharyya, Indian J. Pure Appl. Phys. 35, 329 (1997)

    Google Scholar 

  20. J G Powles, J. Molecular Liquids 56, 35 (1993)

    Article  Google Scholar 

  21. C P Smyth, Dielectric behaviour and structure (Mc Graw Hill, 1955) p. 140

  22. N Ghosh, S K Sit, A K Bothra and S Acharyya, J. Phys. 34, 379 (2001)

    Google Scholar 

  23. K Dutta, S K Sit and S Acharyya, J. Molecular Liquids 92, 263 (2001)

    Article  Google Scholar 

  24. H D Purohit, H S Sharma and A D Vyas, Indian J. Pure Appl. Phys. 12, 273 (1974)

    Google Scholar 

  25. S N Sen and R Ghosh, Indian J. Pure Appl. Phys. 10, 701 (1972)

    Google Scholar 

  26. S Chandra and J Prakash, J. Phys. Soc. Jpn. 35, 876 (1975)

    Article  ADS  Google Scholar 

  27. L Glasser, J Crossley and C P Smyth, J. Chem. Phys. 57, 3977 (1972)

    Article  ADS  Google Scholar 

  28. R J Sengwa and K Kaur, Indian J. Pure Appl. Phys. 37, 469 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, K., Sit, S. & Acharyya, S. Dielectric relaxation phenomena of rigid polar liquid molecules under giga hertz electric field. Pramana - J Phys 57, 775–793 (2001). https://doi.org/10.1007/s12043-001-0028-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0028-6

Keywords

PACS No.

Navigation