Skip to main content
Log in

Random matrix model for disordered conductors

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present a random matrix ensemble where real, positive semi-definite matrix elements, x, are log-normal distributed, exp[−log2(x)]. We show that the level density varies with energy, E, as 2/(1+E) for large E, in the unitary family, consistent with the expectation for disordered conductors. The two-level correlation function is studied for the unitary family and found to be largely of the universal form despite the fact that the level density has a non-compact support. The results are based on the method of orthogonal polynomials (the Stieltjes-Wigert polynomials here). An interesting random walk problem associated with the joint probability distribution of the ensuing ensemble is discussed and its connection with level dynamics is brought out. It is further proved that Dyson’s Coulomb gas analogy breaks down whenever the confining potential is given by a transcendental function for which there exist orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M L Mehta, Random matrices (Academic Press, New York, 1991)

    MATH  Google Scholar 

  2. G Montambaux, in Quantum fluctuations Les Houches, Session LXIII edited by E Giacobino, S Reynaud and J Zinn-Justin (Elsevier, Netherlands, 1995)

    Google Scholar 

  3. Y Imry, in Directions in condensed matter physics (World Scientific, Singapore, 1992)

    Google Scholar 

  4. Two-dimensional quantum gravity and random surfaces edited by D J Gross, T Piran and S Weinberg (World Scientific, Singapore, 1992)

    Google Scholar 

  5. S W McDonald, Ph.D. Thesis (UMI-8413506, Ann Arbor, MI, 1983)

    Google Scholar 

  6. O Bohigas, M-J Giannoni and C Schmit, Phys. Rev. Lett. 52, 1 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. S R Jain and S V Lawande, Proc. Indian Natl. Sci. Acad. 65, 275 (1995)

    MathSciNet  Google Scholar 

  8. S Washburn and R A Webb, Adv. Phys. 35, 375 (1986)

    Article  ADS  Google Scholar 

  9. T H Seligman and H Nishioka, Quantum chaos and statistical nuclear physics, Lecture notes in Physics (Springer, Heidelberg, 1986) vol. 263

    Google Scholar 

  10. K A Muttalib, Phys. Rev. Lett. 65, 745 (1990)

    Article  ADS  Google Scholar 

  11. P A Lee and T V Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  12. R Landauer, IBM J. Res. Develop. 1, 233 (1957); Philos. Mag. 21, 863 (1970)

    Article  MathSciNet  Google Scholar 

  13. P W Anderson, D J Thouless, E. Abrahams, and D S Fisher, Phys. Rev. B22, 3519 (1981)

    ADS  MathSciNet  Google Scholar 

  14. V I Mel’nikov, Sov. Phys. Solid State 23, 444 (1981)

    Google Scholar 

  15. K A Muttalib, Y Chen, M E H Ismail and V N Nicopoulos, Phys. Rev. Lett. 71, 471 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Y Chen, M E H Ismail and K A Muttalib, J. Phys. C5, 177 (1993)

    Google Scholar 

  17. F J Dyson, J. Math. Phys. 13, 90 (1972)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. P Pechukas, Phys. Rev. Lett. 51, 943 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  19. T Yukawa, Phys. Rev. Lett. 54, 1883 (1985)

    Article  ADS  Google Scholar 

  20. S R Jain and Z Ahmed, Brownian motion model of random matrices revisited (preprint) 1999

  21. A Erdelyi, W Magnus, F Oberhetinger and F G Tricomi (eds), Tables of integral transforms Bateman manuscript project (McGraw-Hill Inc., New York, 1954) vol. 2, p. 244

    Google Scholar 

  22. G Szegö, Orthogonal polynomials, AMS Colloquium Publications (AMS, Providence, Rhode Island, 1939) vol. XXIII

    Google Scholar 

  23. Appendix 6 in ref. [1]

  24. P Forrester, J. Stat. Phys. 76, 331 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. B V Bronk, J. Math. Phys. 6, 228 (1965)

    Article  ADS  Google Scholar 

  26. The coefficients are a=0.063, b=−1.690, c=12.279, d=−22.123, c=12.003, f=−5.912, g=13.020, h=−8.111, i=−5.677, j=6.068

  27. M Kreynin and B Shapiro, Phys. Rev. Lett. 74, 4122 (1995)

    Article  ADS  Google Scholar 

  28. T Nagao and K Slevin, J. Math. Phys. 34, 2075; 2317 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. E. Brezin and A Zee, Nucl. Phys. B402, 613 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. J Ambjorn, J Jurkiewicz and Yu M Makeenko, Phys. Lett. B251, 517 (1990)

    ADS  MathSciNet  Google Scholar 

  31. G Hackenbroich and H A Weidernmüller, Phys. Rev. Lett. 74, 4118 (1995)

    Article  ADS  Google Scholar 

  32. C Blecken, Y Chen and K A Muttalib, J. Phys. A27, L563 (1994)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, Z., Jain, S.R. Random matrix model for disordered conductors. Pramana - J Phys 54, 413–422 (2000). https://doi.org/10.1007/s12043-000-0133-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-000-0133-y

Keywords

PACS Nos

Navigation