Skip to main content
Log in

Supersymmetric unification at the millennium

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We argue that the discovery of neutrino mass effects at super-Kamiokande implies a clear logical chain leading from the Standard Model, through the MSSM and the recently developed minimal left right supersymmetric models with a renormalizable see-saw mechanism for neutrino mass, to left right symmetric SUSY GUTS: in particular, SO(10) and SU(2) L × SU(2) R × SU(4) C . The progress in constructing such GUTS explicitly is reviewed and their testability/falsifiability by lepton flavour violation and proton decay measurements emphasized. SUSY violations of the survival principle and the interplay between third generation Yukawa coupling unification and the structurally stable IR attractive features of the RG flow in SUSY GUTS are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C S Aulakh, hep-ph/9903309, Pramana — J. Phys. 54, 1 (2000)

    Article  Google Scholar 

  2. The super-Kamiokande Collaboration: Evidence for oscillation of atmospheric neutrinos, hep-ex/9807003

  3. Search for proton decay via p − → e +π0 in a large water Cerenkov detector, hep-ex/9806014

  4. W Marciano and G Senjanovic, Phys. Rev. D25, 3092 (1982)

    ADS  Google Scholar 

  5. M B Einhorn and D R T Jones, Nucl. Phys. B196, 475 (1982)

    Article  ADS  Google Scholar 

  6. U Amaldi, W de Boer and H Furstenau, Phys. Lett. B260, 447 (1991)

    ADS  Google Scholar 

  7. P Langacker and M Luo, Phys. Rev. D44, 817 (1991)

    ADS  Google Scholar 

  8. M Gell-Mann, P Ramond and R Slansky, in: Supergravity edited by F van Nieuwenhuizen and D Freedman (Amsterdam, North Holland, 1979) p. 315

    Google Scholar 

  9. T Yanagida, in: Workshop on the Unified Theory and Baryon Number in the Universe edited by O Sawada and A Sugamoto (KEK, Tsukuba) 95 (1979)

    Google Scholar 

  10. R N Mohapatra and G Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  11. R N Mohapatra and G Senjanovic, Phys. Rev. D23, 165 (1981)

    ADS  Google Scholar 

  12. R N Mohapatra, Phys. Rev. D34, 3457 (1986)

    ADS  Google Scholar 

  13. A Font, L Ibanez and F Quevedo, Phys. Lett. B228, 79 (1989)

    ADS  MathSciNet  Google Scholar 

  14. C S Aulakh, K Benakli and G Senjanovic, Phys. Rev. Lett. 79, 2188 (1997)

    Article  ADS  Google Scholar 

  15. C S Aulakh, A Melfo, and G Senjanovic, Phys. Rev. D57, 4174 (1998)

    ADS  Google Scholar 

  16. C S Aulakh, A Melfo, A Rasin and G Senjanovic, Phys Rev. D58, 115007 (1998)

    ADS  Google Scholar 

  17. C S Aulakh and R N Mohapatra, Phys. Lett. 119B, 136 (1982)

    ADS  Google Scholar 

  18. F Buccella, J P Derendinger, S Ferrara and C A Savoy, Phys. Lett. B115, 375 (1982)

    ADS  MathSciNet  Google Scholar 

  19. I Affleck, M Dine and N Seiberg, Nucl. Phys. B241, 493 (1984)

    Article  ADS  Google Scholar 

  20. I Affleck, M Dine and N Seiberg, Nucl. Phys. B256, 557 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. For a comprehensive treatment of the subject see M Luty and W Taylor, Phys. Rev. D53, 3399 (1996)

    ADS  MathSciNet  Google Scholar 

  22. Charanjit S Aulakh, Borut Bajc, Alejandra Melfo, Andrija Rasin and Goran Senjanovic, SO(10) theory of R-parity and neutrino mass (to appear)

  23. Charanjit S Aulakh, Borut Bajc, Alejandra Melfo, Andrija Rasin and Goran Senjanovic, Phys. Lett. B460, 325 (1999)

    ADS  Google Scholar 

  24. T Kibble, G Lazarides and Q Shafi, Phys. Rev. D26, 435 (1982)

    ADS  Google Scholar 

  25. D Chang, R N Mohapatra and M K Parida, Phys. Rev. Lett. 52, 1072 (1984)

    Article  ADS  Google Scholar 

  26. C S Aulakh and R N Mohapatra, Phys. Rev. D28, 217 (1983)

    ADS  Google Scholar 

  27. K S Babu, B Datta, R N Mohapatra, hep-ph/9812421, hep-ph/9904366, hep-ph/9904366

  28. D Pendleton and G G Ross, Phys. Lett. B98, 291 (1981)

    ADS  Google Scholar 

  29. C T Hill, Phys. Rev. D24, 691 (1981)

    ADS  Google Scholar 

  30. B Schrempp and M Wimmer, hep-ph/9606386

  31. H Baer, M A Diaz, J Ferrandis and X Tata, hep-ph/9907211

  32. L Alvarez-Gaume, J Polchinski and M B Wise, Nucl. Phys. B221, 495 (1983)

    Article  ADS  Google Scholar 

  33. F M Borzumati, M Olechowski and S Prokorski, hep-ph/9412379, Phys. Lett. B349, 311 (1995)

    ADS  Google Scholar 

  34. H Murayama, M Olechowski and S Prokorski, Phys. Lett. B344, 201 (1995)

    ADS  Google Scholar 

  35. L J Hall, V A Kostelecky and S Raby, Nucl. Phys. B267, 415 (1986)

    Article  ADS  Google Scholar 

  36. R Barbieri and L J Hall, Phys. Lett. B338, 212 (1994)

    ADS  Google Scholar 

  37. R Barbieri, L J Hall and A Strumia, Nucl. Phys. B445, 219 (1995)

    Article  ADS  Google Scholar 

  38. H Murayama, M Olechowski and S Prokorski, Phys. Lett. B371, 57 (1996)

    ADS  Google Scholar 

  39. J Hisano, H Murayama and T Yanagida, Nucl. Phys. B402, 46 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aulakh, C.S. Supersymmetric unification at the millennium. Pramana - J Phys 55, 137–149 (2000). https://doi.org/10.1007/s12043-000-0090-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-000-0090-5

Keywords

PACS Nos

Navigation