Skip to main content

Advertisement

Log in

Prospects of Marker-Assisted Recurrent Selection: Current Insights and Future Implications

  • Review
  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

The long-term goal of a breeder is to increase genetic variation by bringing desirable genes from natural populations into the breeding population. With the advancement in genomics, molecular marker tools have become the breeder’s choice for genotypic selection, facilitating quick and reliable selection of individuals in the segregating populations. Various marker-assisted breeding (MAB) strategies are needed in different crop systems for the rapid development of cultivars. The advancement of genomic resources has led to the development of multi-parent and multi-trait improvement strategies such as marker-assisted gene pyramiding (MAGP), marker-assisted recurrent selection (MARS), and genomic selection (GS). MARS is an important population improvement method that focuses on cyclically choosing and enriching favorable alleles from biparental or multiparent introgression at several loci. MARS begins with a heterogeneous base population and exploits superior recombinants during each cycle to produce a broad-based improved population, an inbred line or a hybrid. Realizing the MARS potentiality, various public and private sectors have successfully applied it in many commercial crops. Here we present the merits of MARS with other marker-assisted selection schemes, the procedure involved, and key factors to be considered for its successful implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdulmalik RO, Menkir A, Meseka SK, Unachukwu N, Ado SG, Olarewaju JD, Aba DA, Hearne S, Crossa J, Gedil M (2017) Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Front Plant Sci 8:841

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Zhang L, DeLacy I, Arief V, Dieters M, Pfeiffer WH, Wang J, Li H (2020) Modeling and simulation of recurrent phenotypic and genomic selections in plant breeding under the presence of epistasis. The Crop Journal 8(5):866–877

    Article  Google Scholar 

  • Allier A, Lehermeier C, Charcosset A, Moreau L, Teyssèdre S (2019) Improving short-and long-term genetic gain by accounting for within-family variance in optimal cross-selection. Front Genet 10:1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza Sativa. Theor Appl Genet 84(3–4):345–354

    Article  CAS  PubMed  Google Scholar 

  • Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, Dong Y, Foresman BJ, Kolb FL (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36(7):84

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA, Jannink JL (2013) Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci 53(5):1894–1906

    Article  CAS  Google Scholar 

  • Babu R, Prasanna BM (2014) Molecular breeding for quality protein maize (QPM). In: Genomics of Plant Genetic Resources. Springer, Dordrecht. pp 489–505

  • Bankole F, Menkir A, Olaoye G, Crossa J, Hearne S, Unachukwu N, Gedil M (2017) Genetic gains in yield and yield related traits under drought stress and favorable environments in a maize population improved using marker assisted recurrent selection. Front Plant Sci 8:808

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartholomé J, Prakash PT, Cobb JN (2022) Genomic prediction: Progress and perspectives for rice rice improvement. In: Genomic Prediction of Complex Traits: Methods and Protocols, pp 569–617

  • Barton NH (2009) Why sex and recombination? 187–195 in coldspring harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Baskaran K, Hash CT, Senthilvel S, Raj AB, Muthiah RA (2009) SSR allele frequency changes in response to recurrent selection for pearl millet grain yield and other agronomic traits. J SAT Agric Res 7:8

    Google Scholar 

  • Bernardo R (2010) Breeding for quantitative traits in plants, 2nd edn. Stemma Press, Woodbury, MN

    Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants (Vol. 1, p 369). Woodbury, MN: Stemma Press

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo R (2014) Genome wide selection when major genes are known. Crop Sci 54(1):68–75

    Article  Google Scholar 

  • Bernardo R, Charcosset A (2006) Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. Crop Sci 46(2):614–621

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090. https://doi.org/10.2135/cropsci2006.11.0690

    Article  Google Scholar 

  • Bernardo R, Moreau L, Charcosset A (2006) Number and fitness of selected individuals in marker-assisted and phenotypic recurrent selection. Crop Sci 46:1972–1980

    Article  Google Scholar 

  • Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Meisel B, Sehabiague P, Vivek BS, Oikeh S, Alvarado G (2016) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56(1):344–353

    Article  CAS  Google Scholar 

  • Bian Y, Holland JB (2017) Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity 118(6):585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeven PH, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129(6):1231–1245

    Article  PubMed  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013

  • Bradbury LM, Fitzgerald TL, Henry RJ, Jin Q, Waters DL (2005) The gene for fragrance in rice. Plant Biotechnol J 3(3):363–370

    Article  CAS  PubMed  Google Scholar 

  • Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S (2022a) Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front Genet 13:832153

    Article  PubMed  PubMed Central  Google Scholar 

  • Budhlakoti N, Mishra DC, Majumdar SG, Kumar A, Srivastava S, Rai SN, Rai A (2022b) Integrated model for genomic prediction under additive and non-additive genetic architecture. Front Plant Sci 13:1027558

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulmer M (1971) The effect of selection on genetic variability. Am Nat 105(943):201–211

    Article  Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, Zhang X, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chahal GS, Gosal SS (2006) Principles and procedures of plant breeding. Biotechnological, and conventional approaches. Alpha Sci. International Ltd. Harrow. UK

  • Chaitra KC, Sarvamangala C, Manikanta DS, Chaitra PA, Fakrudin B (2020) Insights into genetic diversity and population structure of Indian carrot (Daucus carota L.) accessions. J Appl Genet 61:303–312

    Article  CAS  PubMed  Google Scholar 

  • Charmet G, Robert N, Perretant MR, Gay G, Sourdille P, Groos C, Bernard S, Bernard M (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119(1–2):89–93

    Article  CAS  Google Scholar 

  • Chevalet C, Mulsant P (1992) Using markers in gene introgression breeding programs. Genetics 132(4):1199–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Cholin SS, Poleshi CA, Manikanta DS, Christopher C (2019) Exploring the genomic resources of carrot for cross-genera transferability and phylogenetic assessment among orphan spices and vegetables of Apiaceae family. Hortic Environ Biotechnol 60:81–93

    Article  CAS  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theor Appl Genet 132:627–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. J Agron 41(8):360–367

    Article  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V (2014) Global distribution and trends of tropospheric ozone: an observation-based review. Elem Sci Anth 2

  • Cregan PB, Mudge J, Fickus EW, Danesh D, Denny R, Young ND (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhg1 locus. Theor Appl Genet 99(5):811–818

    Article  CAS  Google Scholar 

  • Cros D, Denis M, Bouvet JM, Sánchez L (2015) Long-term genomic selection for heterosis without dominance in multiplicative traits: Case study of bunch production in oil palm. BMC Genomics 16:1–17

    Article  Google Scholar 

  • Crosbie TM, Eathington SR, Johnson GR, Edwards M, Reiter R, Stark S, Mohanty RG, Oyervides M, Buehler RE, Walker AK, Dobert R (2006) Plant breeding: Past, present, and future. In: Lamkey KR, Lee M (eds) Plant breeding: The Arnel R Hallauer international symposium. Blackwell Publishing, Oxford, UK, pp 3–50

    Chapter  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Article  CAS  PubMed  Google Scholar 

  • de C. Lara LA, Santos MF, Jank L, Chiari L, Vilela MDM, Amadeu RR, Dos Santos JP, Pereira GDS, Zeng ZB, Garcia AAF (2019) Genomic selection with allele dosage in Panicum maximum jacq. G3: Genes Genomes Genetics 9(8):2463–2475

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57(3):1070–1082

    Article  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: Genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • Dhillon BS (1991) Alternate recurrent selection of S1 and half-sib families for intrapopulation improvement (No. 93-012892. CIMMYT.)

  • Dhliwayo T, Palacios-Rojas N, Crossa J, Pixley KV (2014) Effects of S1 recurrent selection for provitamin A carotenoid content for three open-pollinated maize cultivars. Crop Sci 54(6):2449–2460

    Article  Google Scholar 

  • Doney DL, Theurer JC (1978) Reciprocal recurrent selection in sugarbeet. Field Crop Res 1:173–181

    Article  Google Scholar 

  • Dormatey R, Sun C, Ali K, Coulter JA, Bi Z, Bai J (2020) Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy 10(9):1255

    Article  CAS  Google Scholar 

  • Dudley JW, Lambert RJ (2010) 100 generations of selection for oil and protein in corn. Plant Breed Rev 24:79–110

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:154–163

    Article  Google Scholar 

  • Eathington SR (2005) Practical applications of molecular technology in the development of commercial maize hybrids. Proc 60th Ann Corn Sorghum Seed Res Conf Washington, D.C., USA. American Seed Trade Association

  • Edwards M, Johnson L (1994) RFLPs for rapid recurrent selection: Analysis of molecular marker data. American Society for Horticultural Science, CSSA, Madison, WI, pp 33–40

    Google Scholar 

  • Eyherabide GH, Hallauer AR (1991) Reciprocal full‐sib recurrent selection in maize: II. Contributions of additive, dominance, and genetic drift effects. Crop Sci 31(6)1442–1448

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th ed. Pearson Education, Harlow, UK

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78(2):737–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradgley N, Gardner KA, Bentley AR, Howell P, Mackay IJ, Scott MF, Mott R, Cockram J (2023) Multi-trait ensemble genomic prediction and simulations of recurrent selection highlight importance of complex trait genetic architecture for long-term genetic gains in wheat. in silico Plants 5(1):diad002

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G, Sareen S, Balyan HS, Gupta PK (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE 12(8):e0182857

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher JA, Turner LB, Cairns AJ, Farrell M, Lovatt JA, Skøt K, Armstead IP, Humphreys MO, Roldan-Ruiz I (2015) Genetic differentiation in response to selection for water-soluble carbohydrate content in perennial ryegrass (Lolium perenne L.). BioEnergy Res 8(1):77–90

  • Gedil M, Menkir A (2019) An integrated molecular and conventional breeding scheme for enhancing genetic gain in maize in Africa. Front Plant Sci 10

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10(6):381–391

    Article  CAS  PubMed  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018a) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018b) Optimal cross-selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceeding of the seventh genetics congress. Cambridge University Press, Edinburgh, pp 132–133

    Google Scholar 

  • Grafius JE (1965) Shortcuts in plant breeding. Crop Sci 5:377

    Article  Google Scholar 

  • Grattapaglia D (2022) Twelve years into genomic selection in forest trees: Climbing the slope of enlightenment of marker assisted tree breeding. Forests 13(10):1554

    Article  Google Scholar 

  • Grenier C, Cao TV, Ospina Y, Quintero C, Châtel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS ONE 10(8):e0136594

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallauer AR (1999) Temperate maize and heterosis. In Coors JG, Pandey S (eds), The genetics and exploitation of heterosis in crops (pp 353–361). Proc Int Symp Heterosis Crops. Mexico City, 18–22 August 1997. ASA, CSSA and SSSA, Madison, WI, USA

  • Hallauer AR, Eberhart SA (1970) Reciprocal full-sib selection 1. Crop Sci 10(3):315–316

    Article  Google Scholar 

  • Hallauer AR (1973) Hybrid development and population improvement in maize by reciprocal full-sib selection. Egypt J Genet Cytol

  • Hallauer AR, Carena MJ, Miranda Filho JD (2010) Quantitative genetics in maize breeding (vol. 6). Springer Science & Business Media

  • Hallauer R, Filho JBM (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames, Iowa, USA

    Google Scholar 

  • Hecker RJ (1985) Reciprocal recurrent selection for the development of improved sugarbeet hybrids. J ASSBT 23:47–57

    Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: Gain per unit time and cost. Crop Sci 50(5):1681–1690

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12

    Article  CAS  Google Scholar 

  • Hickey JM, Chiurugwi T, Mackay I, Powell W (2017a) Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49(9):1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Hickey JM, Chiurugwi T, Mackay I, Powell W, Eggen A, Kilian A, Jones C, Canales C, Grattapaglia D, Bassi F, Atlin G (2017b) Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49(9):1297

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8(3):269–294

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2003) Marker-assisted breeding. In: Newbury HJ (ed) Plant molecular breeding. Blackwell Publishing and CRC Press, Oxford/Boca Raton, pp 30–59

    Google Scholar 

  • Hospital F, Charcosset M (1997) Marker-assisted introgression of quantitative loci. Genetics 147:1469–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J (2013) The genomic signature of crop-wild introgression in maize. PLoS Genet 9(5):e1003477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain N, Singh GP, Singh PK, Ramya P, Krishna H, Ramya KT, Todkar L, Amasiddha B, Kumar KP, Vijay P, Jadon V (2014) Molecular approaches for wheat improvement under drought and heat stress

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: From theory to practice. Brief Funct Genomics 9(2):166–177

    Article  CAS  PubMed  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Plant breeding from laboratories to fields, pp 45–83

  • Jighly A, Lin Z, Pembleton LW, Cogan NO, Spangenberg GC, Hayes BJ, Daetwyler HD (2019) Boosting genetic gain in allogamous crops via speed breeding and genomic selection. Front Plant Sci 10:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson R (2004) Marker assisted selection. In: Jannick J (ed), Plant Breed Rev 24(1):293–310

  • Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5(3):51–60

    CAS  Google Scholar 

  • Kebede D, Mengesha W, Menkir A, Abe A, Garcia-Oliveira AL, Gedil M (2021) Marker based enrichment of provitamin A content in two tropical maize synthetics. Sci Rep 11(1):14998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kicherer A, Herzog K, Töpfer R (2015) High-throughput phenotyping for trait detection in vineyards. In: BIO Web of Conferences (vol. 5, p 01018). EDP Sciences

  • Knapp SJ (1998) Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci 38(5):1164–1174

    Article  Google Scholar 

  • Kolawole AO, Menkir A, Blay E, Ofori K, Kling JG (2018) Genetic advance in grain yield and other traits in two tropical maize composites developed via reciprocal recurrent selection. Crop Sci 58(6):2360–2369

    Article  Google Scholar 

  • Kole C (ed) (2013) Genomics and breeding for climate-resilient crops. New York: Springer

  • Kulkarni CC, Cholin SS, Bajpai AK, Ondrasek G, Mesta RK, Rathod S, Patil HB (2023) Comparative root transcriptome profiling and gene regulatory network analysis between Eastern and Western carrot (Daucus carota L.) cultivars reveals candidate genes for vascular tissue patterning. Plants 12:3449

  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA (2012) Genomics-assisted plant breeding in the 21st century: Technological advances and progress. In: Plant breeding. Intechopen

  • Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, Rafieva FU, Khalikov KK, Erjigitov DS, Khidirov MT et al (2021) Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium Spp.). Front Plant Sci 12:779386

  • Kushwah A, Gupta S, Bindra S, Johal N, Singh I, Bharadwaj C, Dixit GP, Gaur PM, Nayyar H, Singh S (2020) Gene pyramiding and multiple character breeding. In Chickpea: Crop wild relatives for enhancing genetic gains (pp 131–165). Academic Press

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet 124(3):743–775

    Article  CAS  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH (2013) The B rassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the L eptosphaeria maculans effector AVRLM 1. New Phytol 197(2):595–605

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu C, Wang J, Yu J (2012) Computer simulation in plant breeding. In: Advances in agronomy (Vol. 116, pp 219–264). Academic Press

  • Liu X, Wang H, Hu X, Li K, Liu Z, Wu Y, Huang C (2019) Enhancing genomic selection with quantitative trait loci and nonadditive effects revealed by empirical evidence in maize. Front Plant Sci 10:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li WX, Zou C, Prasanna BM, Olsen MS (2018) Factors affecting genomic selection revealed by empirical evidence in maize. Crop J 6(4):341–352

    Article  Google Scholar 

  • Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3: Genes Genomes Genetics 3(3):481–491

  • Lush J (1937) Animal breeding. Iowa State College Press, Ames, Plans

    Google Scholar 

  • Lyra DH, Granato ÍSC, Morais PPP, Alves FC, dos Santos ARM, Yu X, Guo T, Yu J, Fritsche-Neto R (2018) Controlling population structure in the genomic prediction of tropical maize hybrids. Mol Breeding 38(10):126

    Article  Google Scholar 

  • Majumdar GS, Rai A, Mishra DC (2020) Integrated framework for selection of additive and nonadditive genetic markers for genomic selection. J Comput Biol 27(6):845–855

    Article  Google Scholar 

  • Malav AK, Chandrawat I, Chandrawat KS (2016) Gene pyramiding: an overview. Int J Curr Res Biosci Plant Biol 3(7):22–28

    Article  CAS  Google Scholar 

  • Marcón F, Martínez EJ, Zilli AL, Rodríguez GR, Brugnoli EA, Acuña CA (2020) Recurrent phenotypic selection and recurrent selection based on combining ability in tetraploid bahiagrass. Crop Sci 60(3):1386–1397

    Article  Google Scholar 

  • Mayor PJ, Bernardo R (2009a) Doubled haploids in commercial maize breeding: One-stage and two-stage phenotypic selection versus marker-assisted recurrent selection. Maydica 54(4):439–448

    Google Scholar 

  • Mayor PJ, Bernardo R (2009b) Genome wide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci 49(5):1719–1725

    Article  Google Scholar 

  • Merrick LF, Herr AW, Sandhu KS, Lozada DN, Carter AH (2022) Utilizing genomic selection for wheat population development and improvement. Agronomy 12(2):522

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157:1819–1829

    Article  CAS  Google Scholar 

  • Mishra DC, Budhlakoti N, Majumdar SG, Rai A (2021) Innovations in genomic selection: Statistical perspective 101–111

  • Misztal I, Aguilar I, Lourenco D, Ma L, Steibel JP, Toro M (2021) Emerging issues in genomic selection. J Animal Sci 99(6):skab092

  • Morais OP (1997) Effective population size. In: Guimarães EP (ed), Recurrent selection in rice. (In Spanish.) Centro Int. Agric. Trop., Cali, Colombia

  • Moreau L, Charcosset A, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148(3):1353–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau L, Charcosset A, Gallais A (2004) Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 137(1):111–118

    Article  CAS  Google Scholar 

  • Muleta KT, Pressoir G, Morris GP (2019) Optimizing genomic selection for a sorghum breeding program in Haiti: a simulation study. G3: Genes Genomes Genetics 9(2):391–401

  • Müller D, Schopp P, Melchinger AE (2017) Persistency of prediction accuracy and genetic gain in synthetic populations under recurrent genomic selection. G3: Genes Genomes Genetics 7(3):801

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110(6):1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz MA, Yang SH, Rehman HM, Baloch FS, Lee JD, Park JH, Chung G (2017) Genetic diversity and population structure of Korean wild soybean (Glycine soja Sieb. and Zucc.) inferred from microsatellite markers. Biochem Syst Ecol 71:87–96

    Article  CAS  Google Scholar 

  • Nayak SN, Singh VK, Varshney RK (2017) Marker-assisted selection

  • Newbury HJ (2003) Plant molecular breeding. Blackwell Publishing/CRC Press, Birmingham

    Google Scholar 

  • Ngcamphalala W (2018) Initiation of a wheat pre-breeding effort aimed at yield improvement using male-sterility marker assisted recurrent selection (Doctoral dissertation, Stellenbosch: Stellenbosch University)

  • Openshaw SJ, Frascaroli E (1997) QTL detection and marker-assisted selection for complex traits in maize. In: Proceedings of the 52nd Annual Corn and Sorghum Research Conference. pp 44–53. (American Seed Trade Association, Washington D.C., USA)

  • Peleman JD, van der Voort JR (2003) The challenges in marker assisted breeding. Eucarpia leafy vegetables. Center for Genetic Resources, The Netherlands

  • Perveen N, Cholin SS, Hipparagi K, Prabhuling G, Murthy BNS, Peerjade D (2023) Molecular diversity assessment among the pomegranate genotypes belonging to diverse genetic background using microsatellite markers. Acta Physiol Plant 45:92

    Article  CAS  Google Scholar 

  • Platten JD, Cobb JN, Zantua RE (2019) Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. PLoS ONE 14(1):e0210529. https://doi.org/10.1371/journal.pone.0210529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM, Cairns J, Xu Y (2013) Genomic tools and strategies for breeding climate resilient cereals. In: Genomics and Breeding for Climate-resilient Crops (pp 213–239). Springer, Berlin, Heidelberg

  • Pretorius ZA, Pakendorf KW, Marais GF, Prins R, Komen JS (2007) Challenges for sustainable cereal rust control in South Africa. Aust J Agric Res 58(6):593–601

    Article  Google Scholar 

  • Ragimekula N, Varadarajula NN, Mallapuram SP, Gangimeni G, Reddy RK, Kondreddy HR (2013) Marker assisted selection in disease resistance breeding. J Plant Breed Genet 1(2):90–109

    Google Scholar 

  • Ragot M, Gay G, Muller JP, Durovray J (2000) Efficient selection for the adaptation to the environment through QTL mapping and manipulation in maize. Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments, pp 128–130

  • Rahman M, Davies P, Bansal U, Pasam R, Hayden M, Trethowan R (2020) Marker-assisted recurrent selection improves the crown rot resistance of bread wheat. Mol Breeding 40:1–14

    Article  Google Scholar 

  • Rembe M, Reif JC, Ebmeyer E, Thorwarth P, Korzun V, Schacht J, Boeven PH, Varenne P, Kazman E, Philipp N, Kollers S (2021) Reciprocal recurrent genomic selection is impacted by genotype-by-environment interactions. Front Plant Sci 12:703419

    Article  PubMed  PubMed Central  Google Scholar 

  • Rembe M, Zhao Y, Jiang Y, Reif JC (2019) Reciprocal recurrent genomic selection: an attractive tool to leverage hybrid wheat breeding. Theor Appl Genet 132:687–698

    Article  PubMed  Google Scholar 

  • Ribaut J, Betrán J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541

    Article  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194(2):493–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodenburg RJ (2018) The functional genomics laboratory: F unctional validation of genetic variants. J Inherit Metab Dis 41(3):297–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra LM, Caixeta ET, Barka GD, Borém A, Zambolim L, Nascimento M, Cruz CD, Oliveira ACBD, Pereira AA (2023) Marker-assisted recurrent selection for pyramiding leaf rust and coffee berry disease resistance alleles in Coffea arabica L. Genes 14(1):189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakiyama NS, Ramos HCC, Caixeta ET, Pereira MG (2014) Plant breeding with marker-assisted selection in Brazil. Crop Breed Appl Biotechnol 14(1):54–60

    Article  Google Scholar 

  • Salgotra RK, Stewart CN Jr (2020) Functional markers for precision plant breeding. Int J Mol Sci 21(13):4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu N, Dixit S, Swamy BM, Vikram P, Venkateshwarlu C, Catolos M, Kumar A (2018a) Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci Rep 8(1):1–13

    Article  Google Scholar 

  • Sandhu N, Dixit S, Swamy BM, Vikram P, Venkateshwarlu C, Catolos M, Kumar A (2018b) Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci Rep 8(1):1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Santa Catarina R, Pereira MG, Vettorazzi JCF, Cortes DFM, de Sousa Poltronieri TP, Azevedo AON, Moreira NF, Miranda DP, de Moraes R, Pirovani AAV, Ramos HCC (2020) Papaya (Carica papaya L.) S1 family recurrent selection: Opportunities and selection alternatives from the base population. Scientia Horticulturae 260:108848

  • Sawler J, Reisch B, Aradhya MK, Prins B, Zhong GY, Schwaninger H, Simon C, Buckler E, Myles S (2013) Genomics assisted ancestry deconvolution in grape. PLoS ONE 8(11):e80791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuermann KK, Jia Y (2016) Identification of a Pi9-containing rice germplasm with a newly developed robust marker. Phytopathology 106(8):871–876

    Article  CAS  PubMed  Google Scholar 

  • Schopp P, Müller D, Technow F, Melchinger AE (2017) Accuracy of genomic prediction in synthetic populations depending on the number of parents, relatedness, and ancestral linkage disequilibrium. Genetics 205(1):441–454

    Article  CAS  PubMed  Google Scholar 

  • Schuster I (2011) Marker-assisted selection for quantitative traits. Crop Breed Appl Biotechnol S1:50–55

    Article  Google Scholar 

  • Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA, Clark M, Dell’Acqua M, Dixon LE, Filippi CV, Fradgley N (2020) Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity 1–21

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40(5):1438–1444

    Article  CAS  Google Scholar 

  • Sehgal D, Rosyara U, Mondal S, Singh R, Poland J, Dreisigacker S (2020) Incorporating genome-wide association mapping results into genomic prediction models for grain yield and yield stability in CIMMYT spring bread wheat. Front Plant Sci 11:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekine D, Tsuda M, Yabe S, Shimizu T, Machita K, Saruta M, Yamada T, Ishimoto M, Iwata H, Kaga A (2021) Improving quantitative traits in self-pollinated crops using simulation-based selection with minimal crossing. Front Plant Sci 1859

  • Semagn K, Beyene Y, Babu R, Nair S, Gowda M, Das B, Tarekegne A, Mugo S, Mahuku G, Worku M, Warburton ML (2015) Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for Sub-Saharan Africa. Crop Sci 55(4):1449–1459

    Article  CAS  Google Scholar 

  • Shamshad M, Sharma A (2018) The usage of genomic selection strategy in plant breeding. Next generation plant breeding 93

  • Singh J, Kaur S, Majithia H (2016) Emerging genetic technologies for improving the security of food crops. In: Emerging Technologies for Promoting Food Security (pp 23–41). Woodhead Publishing

  • Singh NK, Joshi A, Sahoo S, Tufchi M, Rakshit S (2023) Molecular breeding for improving yield in maize: Recent advances and future perspectives. In: QTL Mapping in Crop Improvement, pp 75–99

  • Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S (2023) Integrated genomic selection for accelerating breeding programs of climate-smart cereals. Genes 14(7):1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater AT, Wilson GM, Cogan NO, Forster JW, Hayes BJ (2014) Improving the analysis of low heritability complex traits for enhanced genetic gain in potato. Theor Appl Genet 127:809–820

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Simpson SP (1986) The use of genetic polymorphisms in livestock improvement. J Anim Breed Genet 103:205–217

    Article  Google Scholar 

  • Smýkal P, Nelson MN, Berger JD, Von Wettberg EJ (2018) The impact of genetic changes during crop domestication on healthy food development. Agronomy 8(3):26

    Article  Google Scholar 

  • Song L, Wang R, Yang X, Zhang A, Liu D (2023) Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture 13(3):642

  • Sonnino A, Carena MJ, Guimarães EP, Baumung R, Pilling D, Rischkowsky B (2007) An assessment of the use of molecular markers in developing countries. Marker-assisted selection: Current status and future perspectives in crops, livestock, forestry and fis. Rome, Food and Agriculture Organization of the United Nations, pp 15–26

  • Souza Jr CLD, Barrios SCL, Moro GV (2010) Performance of maize single-crosses developed from populations improved by a modified reciprocal recurrent selection. Scientia Agricola 67:198–205

    Article  Google Scholar 

  • Spasibionek S, Mikołajczyk K, Ćwiek–Kupczyńska H, Piętka T, Krótka K, Matuszczak M, Nowakowska J, Michalski K, Bartkowiak-Broda I (2020) Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PLoS One 15(6):e0233959

  • Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116(4):395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague GF, Eberhart SA (1977) Corn breeding in corn and corn improvement (Sprague, GF, ed.: 305–362). Wisconsin, USA: American Society of Agronomy

  • Stam P (1995) Marker-assisted breeding. In J.W. Van Ooijen & J. Jansen, eds. Biometrics in plant breeding: applications of molecular markers. Proc. 9th Mtg. EUCARPIA Section on Biometrics in Plant Breeding, 32–44. Wageningen, Netherlands, CPRO-DLO

  • Stephen PM, Rita HM (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977

    Article  Google Scholar 

  • Suvarna Ashwini K, Yashaswini R (2023) Marker assisted recurrent selection for crop improvement. In: Molecular Marker Techniques: A Potential Approach of Crop Improvement (pp. 55–67). Singapore: Springer Nature Singapore

  • Tanaka E (2020) Simple outlier detection for a multi-environmental field trial. Biometrics 76(4):1374–1382

    Article  PubMed  Google Scholar 

  • Tardin FD, Pereira MG, Gabriel APC, do Amaral Júnior AT, de Souza Filho GA (2007) Selection index and molecular markers in reciprocal recurrent selection in maize

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C (2014) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41(11):1178–1190

    Article  CAS  PubMed  Google Scholar 

  • Tourrette E, Bernardo R, Falque M, Martin OC (2019) Assessing by modeling the consequences of increased recombination in recurrent selection of Oryza sativa and Brassica rapa. G3: Genes Genomes Genetics 9(12):4169–4181

  • van Berloo R, Stam P (2001) Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor Appl Genet 102(6–7):1107–1112

    Article  Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021) Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci 26(6):631–649

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30(12):1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME (2018) Can genomics deliver climate-change ready crops? Curr Opin Plant Biol 45:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasal SK, Singh NN, Dhillon BS, Patil SJ (2004) Population improvement strategies for crop improvement. In: Plant Breeding (pp 391–406). Springer, Dordrecht

  • Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas‐Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Let 32(15)

  • Wang J, Wan X, Li H, Pfeiffer WH, Crouch J, Wan J (2007) Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet 115(1):87–100

    Article  PubMed  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal 6(4):330–340

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Worthington ML, Miles JW (2015) Reciprocal full-sib recurrent selection and tools for accelerating genetic gain in apomictic Brachiaria. In Molecular Breeding of Forage and Turf: The Proceedings of the 8th International Symposium on the Molecular Breeding of Forage and Turf (pp 19–30). Springer International Publishing

  • Xie C, Xu S (1998) Strategies of marker aided recurrent selection. Crop Sci 38:1526–1535

    Article  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: From publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Xu Y (2011) From line to space: a 3-D profile of molecular plant breeding. In The first congress of cereal biotechnology and breeding

  • Xu Y (2012) Environmental assaying or e-typing as a key component for integrated plant breeding platform. In Marker-assisted selection workshop, 6th international crop science congress

  • Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020a) Enhancing genetic gain through genomic selection: From livestock to plants. Plant Commun 1(1):100005

    Article  PubMed  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1(1)

  • Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2015) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zheng Y, Zheng W, Feng R (2005) Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breeding 15(3):257–269

    Article  Google Scholar 

  • Yi C, Guo W, Zhu X, Min L, Zhang T (2004) Pyramiding breeding by marker assisted recurrent selection in upland cotton II. Selection effects on resistance to Helicoverpa armigera. Scientia Agricultura Sinica 37:801–807

    Google Scholar 

  • Zhang A, Wang H, Beyene Y, Semagn K, Liu Y, Cao S, Cui Z, Ruan Y, Burgueño J, San Vicente F, Olsen M (2017) Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Front Plant Sci 8:1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yin L, Wang M, Yuan X, Liu X (2019) Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front Genet 10:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Li B, Zhang K, Hu K, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J (2016) Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in Brassica napus. Sci Rep 6(1):29553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Chen L, Zhang W, Yang L, Zhu W, Li J, Liu Y, Tong H, Fu L, Liu J, Rasheed A (2020) Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front Plant Sci 11:206

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The idea of implementing the MARS research is the extension of the project supported by the Department of Biotechnology (DBT), Government of India under DBT-BIO-CARe (File No: 102/IFD/SAN/3308/2014-15). CCK greatly acknowledges KSTePS, Ph.D. Fellowship of Dept of Science and Technology (AGR08:2019-20)-Govt of Karnataka.

Author information

Authors and Affiliations

Authors

Contributions

SSC conceived the idea, prepared the draft, and corrected the final version of the manuscript; KCC collected literature and assisted in the preparation of the manuscript.

Corresponding author

Correspondence to Sarvamangala S Cholin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Communicated by: Ray Ming

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholin, S.S., Kulkarni, C.C. Prospects of Marker-Assisted Recurrent Selection: Current Insights and Future Implications. Tropical Plant Biol. 16, 259–275 (2023). https://doi.org/10.1007/s12042-023-09348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-023-09348-8

Keywords

Navigation