Skip to main content

Use of a Mutated Protoporphyrinogen Oxidase Gene as an Effective In Vitro Selectable Marker System that Also Conveys in planta Herbicide Resistance in Sugarcane

Abstract

Genetic engineering can be used to introduce economically important traits in sugarcane cultivars. Part of any transformation process involves the selection of genetically transformed cells. In this study, an efficient sugarcane in vitro selection system was developed using mutated protophorhyrinogen oxidase (PPO) genes as selectable markers. Two PPO genes, that encode proteins targeted either to the mitochondria or plastid, were isolated from tobacco and maize. Site-directed mutagenesis was used to alter the nucleotide sequence of these genes so that the resulting proteins are less sensitive to diphenylether type herbicides. Sugarcane callus was genetically transformed through particle bombardment with constructs allowing expression of either transgene, and putative transgenic calli were selected on fomesafen. It took approximately 4 weeks to select herbicide resistant calli clones on 10 mg/l fomesafen in the presence of light, which increased the selection pressure, and a further 8 weeks to regenerate resistant plantlets. PCR analysis confirmed that all regenerated putative transgenic sugarcane plants contained the transgene. All transgenic plants showed levels of herbicide resistance when planted in soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bower R, Birch R (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    CAS  Article  Google Scholar 

  • Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants - scientific developments, current use, operational access and biosafety considerations. Crit Rev Plant Sci 33(4). https://doi.org/10.1080/07352689.2013.870422

    CAS  Article  Google Scholar 

  • Camadro J, Matringe M, Scalla R, Labbe P (1991) Kinetic studies on protoporphyrinogen oxidase inhibition by diphenyl ether herbicides. Biochem J 277:17–21

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dal-Bianco M, Carneiro MS, Hotta CT, Chapola RG, Hoffmann HP, Garcia AAF, Souza GM (2012) Sugarcane improvement: how far can we go? Curr Opin Biotechnol 23:265–270

    CAS  Article  PubMed  Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane callus using microprojectile bombardment. Aus J Pl Physiol 18:471–480

    CAS  Article  Google Scholar 

  • Gao S, Yang Y, Wang C, Guo J, Zhou D, Wu Q, Su Y, Xu L, Que Y (2016) Transgenic sugarcane with a cry1Ac gene exhibited better phenotypic traits and enhanced resistance against sugarcane borer. PLoS ONE 11(4):e0153929. https://doi.org/10.1371/journal.pone.0153929

    Article  PubMed  PubMed Central  Google Scholar 

  • Grivet L, Arruda P (2002) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    CAS  Article  PubMed  Google Scholar 

  • Ha SB, Lee SB, Lee Y, Yang K, Lee N, Jang SM, Chung JS, Jung S, Kim YS, Wi SG, Back K (2003) The plastidic Arabidopsis protoporphyrinogen IX oxidase gene, with or without the transit sequence, confers resistance to the diphenyl eteher herbicide in rice. Plant Cell Environ 27:79–88

    Article  Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    CAS  Article  PubMed  Google Scholar 

  • Jacobs J, Jacobs N (1984) Effect of unsaturated fatty acids on protoporphyrinogen oxidation, a step in heme and chlorophyll synthesis in plant organelles. Biochem Biophys Res Commun 123:1157–1164

    CAS  Article  PubMed  Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    CAS  Article  PubMed  Google Scholar 

  • Koch AC, Ramgareeb S, Rutherford RS, Snyman SJ, Watt MP (2012) An in vitro mutagenesis protocol for the production of sugarcane tolerant to the herbicide imazapyr. In Vitro Cell Dev Biol 48:417–427

    CAS  Article  Google Scholar 

  • Lencse, RJ (1990) Itchgrass interference and control in sugarcane in Louisiana. LSU Historical Dissertations and Theses. 4929. http://digitalcommons.lsu.edu/gradschool_disstheses/4929

  • Lermontova I, Grimm B (2000) Overexpression of a plastidic protoporphyrinogen IX oxidase leads to resistance to diphenyl-ether herbicide acifluorfen. Plant Physiol 122:75–83

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Nicholl D (2005) Development of PPO inhibitor-resistant cultures and crops. Pest Manag Sci 61:277–285

    CAS  Article  PubMed  Google Scholar 

  • Li X, Volrath SL, Bichol DBG, Chilcott CE, Johnson MA, Ward ER, Law MD (2003) Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. Plant Physiol 133:736–747

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthuritengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    CAS  Article  PubMed  Google Scholar 

  • Matroodi S, Motallebi M, Zamani M, Mousavi A, Davoodi D, Moghaddassi-Jahromi Z (2013) Sugarcane (NCo310) transient transformation using uidA reporter gene. Iranian. J Biotechnol 5(11):89–95. https://doi.org/10.5812/IJB.11203

    Article  Google Scholar 

  • Millhollon RW (1990) Differential response of sugarcane cultivars to competition from Johnsongrass (Sorghum halepense). Agronomy:577–584

  • Millhollon RW (1992) Effect of itchgrass ( Rottboellia cochinchinensis) interference on growth and yield of sugarcane (Saccharum spp. hybrids). Weed Sci 40:48–53

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Article  Google Scholar 

  • Narita S, Tanaka R, Ito T, Okada K, Taketani S, Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182:169–175

    CAS  Article  PubMed  Google Scholar 

  • Park J, Tran LH, Jung S (2017) A protoporphyrinogene oxidase gene expression influences responses of transgenic rice to oxyfluorfen. Biol Plant 61:659–666

    CAS  Article  Google Scholar 

  • Patzoldt W, Hager A, McCormick J, Tranel P (2006) A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci 103:12329–12334

    CAS  Article  PubMed  Google Scholar 

  • Scortecci KC, Creste S, Calsa T, Xavier MA, Landell MGA, Figueira A, Benedito VA (2012) Challenges, opportunities and recent advances in sugarcane breeding. Plant Breeding, Dr. Ibrokhim Abdurakhmonov (Ed.), ISBN: 978-953-307-932-5, InTech, Available from: http://www.intechopen.com/books/plant-breeding/challenges-opportunities-and-recent-advances-insugarcane-breeding

  • Sherman TD, Becerril JM, Matsmoto H, Duke MV, Jacobs JM, Jacobs NJ, Duke SO (1991) Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidase inhibitory herbicides. Plant Physiol 97:280–287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Virk AS, Singh J (2001) Efficacy of a new herbicide for the control of weeds in sugarcane. Sugar Tech 3:63–64

    Article  Google Scholar 

  • Sundar I, Sakthivel N (2008) Advances in selectable marker genes for plant transformation. Plant Physiol 165:1698–1716

    CAS  Article  Google Scholar 

  • Vain P, McMullen MD (1993) Osmotic treatment enhances particle bombardement-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

  • Van der Vyver C, Conradie T, Kossmann J, Lloyd J (2013) In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase. In Vitro Cell Dev Biol Plant 49(2):198–206. https://doi.org/10.1007/s11627-013-9493-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wang WZ, Yang BP, Feng XY, Cao ZY, Feng CL, Wang JG, Xiong GR, Shen LB, Zeng J, Zhao TT, Zhang SZ (2017a) Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Front Plant Sci 8:1535. https://doi.org/10.3389/fpls.2017.01535

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WZ, Yang BP, Feng CL, Wang JG, Xiong GR, Zhao TT, Zhang SZ (2017b) Efficient sugarcane transformation via bar gene selection. Trop Plant Biol 10:77–85

    CAS  Article  Google Scholar 

  • Watanabe N (2000) Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. Plant Cell Physiol 41:889–892

    CAS  Article  PubMed  Google Scholar 

  • Zhang M, Zhuo X, Wang J, Wu Y, Yao W, Chen R (2015) Effective selection and regeneration of transgenic sugarcane plants using positive selection system. In Vitro Cell Dev Biol 51:52–61

    CAS  Article  Google Scholar 

  • Zhangsun D, Luo S, Chen R, Tang K (2007) Improved agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia 62:386

    CAS  Article  Google Scholar 

  • Zhou M (2013) Conventional sugarcane breeding in South Africa: progress and future prospects. Am J Plant Sci 4(2):189–196. https://doi.org/10.4236/aips.2013.42025

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the South African Sugar Association (https://sasri.sasa.org.za).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. van der Vyver.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Beek, C.R., Fernhout, J.J., Kossmann, J. et al. Use of a Mutated Protoporphyrinogen Oxidase Gene as an Effective In Vitro Selectable Marker System that Also Conveys in planta Herbicide Resistance in Sugarcane. Tropical Plant Biol. 11, 154–162 (2018). https://doi.org/10.1007/s12042-018-9208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-018-9208-0

Keywords

  • Sugarcane
  • Protoporphyrinogen oxidase
  • Diphenylether herbicides
  • In vitro selection
  • Plant transformation