Skip to main content

Suberin as an Extra Barrier to Grass Digestibility: a Closer Look to Sugarcane Forage

Abstract

Suberin is a lipid-phenolic biopolymer present in the cell walls of specialized plant cell types. Due to its insolubility and impermeability, suberin forms an important barrier to the transport of water, ions and gases in certain plant tissues, such as the root endodermis, the periderm and the bundle sheath of C4 plants. In sugarcane forage, supplied in tropical countries as complement to animal livestock, the cell walls of most tissues that build up the stem are progressively suberized. Suberin biochemical features and significant content in the stem make this biopolymer an extra factor influencing sugarcane biomass recalcitrance, decreasing digestibility. Here, we summarize the latest data on the biosynthesis, transport and deposition of suberin in plants, with a special focus on sugarcane forage, and discuss how this biopolymer affects biomass digestibility.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

ASFT:

Aliphatic suberin feruloyl transferase

C4H:

cinnamate 4-hydroxylase

CoA:

Coenzyme A

COMT:

Caffeic acid O-methyltransferase

CYP:

Cytochrome P450 monooxygenase

DM:

Dry matter

FAR:

Fatty acyl-CoA reductase

FACT:

Fatty alcohol:caffeoyl-CoA transferase

FTIR:

Fourier transform infrared

F5H:

Ferulate 5-hydroxylase

GPAT:

Glycerol-3-phosphate acyltransferase

G:

Guaiacyl

H:

p-hydroxyphenyl

IVDMD:

in vitro dry matter disappearance ()

KCS:

β-ketoacetyl-CoA synthase

PAL:

Phenylalanine ammonia-lyase

NADP-ME:

NADP-malic enzyme

NDF:

Neutral detergent fiber

S:

Syringyl

TEM:

Transmission electron microscopy

References

  1. Akin DE (1980) Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls. Appl Environ Microbiol 39:242–252

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Anjos IA, Silva DN, Campana MP (2008) Cana-de-açúcar como forrageira. In: Miranda LD, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar, Instituto Agronômico de Campinas, vol 1000. Campinas, SP, Brazil, pp. 725–745

    Google Scholar 

  3. Bartley LE, Peck ML, et al. (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters Rice Cell Wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633. doi:10.1104/pp.112.208694

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Baxter HL, Mazarei M, et al. (2014) Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol J 12:914–924. doi:10.1111/pbi.12195

    PubMed  Article  Google Scholar 

  5. Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The acyltransferase GPAT5 is required for the synthesis of suberin in seed Coat and root of Arabidopsis. The Plant Cell 19:351–368. doi:10.1105/tpc.106.048033

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Beisson F, Li-Beisson Y, Pollard M (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15:329–337. doi:10.1016/j.pbi.2012.03.003

    CAS  PubMed  Article  Google Scholar 

  7. Belanche A, Weisbjerg MR, Allison GG, Newbold CJ, Moorby JM (2014) Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy. J Dairy Sci 97:2361–2375. doi:10.3168/jds.2013-7491

    CAS  PubMed  Article  Google Scholar 

  8. Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240. doi:10.1139/b02-017

    CAS  Article  Google Scholar 

  9. Bernards MA, Lopez ML, Zajicek J, Lewis NG (1995) Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin. J Biol Chem 270:7382–7386. doi:10.1074/jbc.270.13.7382

    CAS  PubMed  Article  Google Scholar 

  10. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Biology 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    CAS  PubMed  Article  Google Scholar 

  11. Bottcher A (2013) Estudo sistemático da deposição de lignina em genótipos contrastantes de cana-de-açúcar. Universidade Estadual de Campinas

  12. Bottcher A, Cesarino I, et al. (2013) Lignification in sugarcane: biochemical characterization, Gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol 163:1539–1557. doi:10.1104/pp.113.225250

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Carvalho GGP, Pires AJV (2008) Organização dos tecidos de plantas forrageiras e suas implicações para os ruminantes. Arch Zootec 57:13–28

    Google Scholar 

  14. Carvalho MVd, Rodrigues PHM, Lima MLP, Anjos IAd, Landell MGdA, Santos MVd, Prada e Silva LF (2010) Composição bromatológica e digestibilidade de cana-de-açúcar colhida em duas épocas do ano 2010 47: doi:10.1590/s1413-95962010000400007

  15. Cesarino I, Araújo P, Domingues Júnior AP, Mazzafera P (2012) An overview of lignin metabolism and its effect on biomass recalcitrance. Brazilian Journal of Botany 35:303–311

    Article  Google Scholar 

  16. Cesarino I, Araújo P, et al. (2013) Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot 64:1769–1781. doi:10.1093/jxb/ert045

    CAS  PubMed  Article  Google Scholar 

  17. Combs D (2015) Low-lignin alfalfa varieties offer potential quality gains. Hay & Forage Grower November:18–19

  18. Compagnon V, Diehl P, et al. (2009) CYP86B1 Is Required for Very Long Chain ω-Hydroxyacid and α,ω-Dicarboxylic Acid Synthesis in Root and Seed Suberin Polyester. Plant Physiol 150:1831–1843. doi:10.1104/pp.109.141408

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. D’Hont A, Grivet L, Feldman P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Article  Google Scholar 

  20. Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp. 7–84

    Chapter  Google Scholar 

  21. de Setta N, Monteiro-Vitorello C, et al. (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics 15:540

    PubMed  PubMed Central  Article  Google Scholar 

  22. DeBolt S, Scheible W-R, et al. (2009) Mutations in UDP-glucose:sterol glucosyltransferase in Arabidopsis cause transparent Testa phenotype and suberization defect in seeds. Plant Physiol 151:78–87. doi:10.1104/pp.109.140582

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. del Río JC, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935. doi:10.1021/jf301002n

    PubMed  Article  CAS  Google Scholar 

  24. Domergue F, Vishwanath SJ, et al. (2010) Three Arabidopsis fatty acyl-coenzyme a reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153:1539–1554. doi:10.1104/pp.110.158238

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Eastman PA, Dengler N, Peterson C (1988) Suberized bundle sheaths in grasses (Poaceae) of different photosynthetic types I. Anatomy, ultrastructure and histochemistry. Protoplasma 142:92–111. doi:10.1007/BF01290867

    CAS  Article  Google Scholar 

  26. Engels F, Brice R (1985) A barrier covering lignified cell walls of barley straw that restricts access by rumen microorganisms. Curr Microbiol 12:217–223. doi:10.1007/BF01573334

    Article  Google Scholar 

  27. Eudes A, George A, et al. (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10:609–620. doi:10.1111/j.1467-7652.2012.00692.x

    CAS  PubMed  Article  Google Scholar 

  28. Fabris LB, Foloni JSS, Santos DH, Calonego JC, Silva PCG, Brancalião SR (2014) Production and quality of forage cane based on variety, row spacing and time of harvest. Global Advanced Research Journal of Agricultural Science 3:16–23

    Google Scholar 

  29. Ferreira GDG, Santos GTS, Cecato U, Cardoso EC (2005) Composição química e cinética da degradação ruminal de gramíneas do gênero Cynodon em diferentes idades ao corte. Acta Scienciarium 27:189–197

    CAS  Google Scholar 

  30. Ferreira EA, Ventrella MC, Santos JB, Barbosa MHP, Silva AA, Procópio SO, Silva EAM (2007) Leaf blade quantitative anatomy of sugarcane cultivars and clones. Planta Daninha 25:25–34

    Article  Google Scholar 

  31. Franke R, Schreiber L (2007) Suberin — a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259. doi:10.1016/j.pbi.2007.04.004

    CAS  PubMed  Article  Google Scholar 

  32. Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues – a typical suberin and a particular cutin. Phytochemistry 66:2643–2658. doi:10.1016/j.phytochem.2005.09.027

    CAS  PubMed  Article  Google Scholar 

  33. Franke R, Höfer R, Briesen I, Emsermann M, Efremova N, Yephremov A, Schreiber L (2009) The DAISY gene from Arabidopsis encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds. The Plant Journal 57:80–95. doi:10.1111/j.1365-313X.2008.03674.x

    CAS  PubMed  Article  Google Scholar 

  34. Garcia AAF, Mollinari M, et al. (2013) SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Scientific Reports 3:3399. doi:10.1038/srep03399 http://www.nature.com/articles/srep03399#supplementary-information

    PubMed  PubMed Central  Article  Google Scholar 

  35. Gobbi KF, Garcia R, Ventrella MC, Garcez Neto AF, Pereira OG (2008) Leaf tissues degradation of signalgrass hay pretreated with urea and submitted to in vitro digestion. Rev Bras Zootec 37:802–809

    Article  Google Scholar 

  36. Gordin CL (2011) Degradabilidade ruminal e digestibilidade in vitro da matéria seca de gramíneas de Cynodon spp em quatro idades de rebrota. Universidade Federal da Grande Dourados, Mato Grosso do Sul

    Google Scholar 

  37. Graça J (2015) Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry 3. doi:10.3389/fchem.2015.00062

  38. Graça J, Pereira H (1998) Feruloyl esters of ω-Hydroxyacids in Cork suberin. Journal of Wood Chemistry and Technology 18:207–217. doi:10.1080/02773819809349577

    Article  Google Scholar 

  39. Graça J, Pereira H (2000) Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers. J Agric Food Chem 48:5476–5483. doi:10.1021/jf0006123

    PubMed  Article  CAS  Google Scholar 

  40. Graça J, Santos S (2006a) Glycerol-derived ester oligomers from cork suberin. Chem Phys Lipids 144:96–107. doi:10.1016/j.chemphyslip.2006.08.001

    PubMed  Article  CAS  Google Scholar 

  41. Graça J, Santos S (2006b) Linear aliphatic dimeric esters from Cork suberin. Biomacromolecules 7:2003–2010. doi:10.1021/bm060174u

    PubMed  Article  CAS  Google Scholar 

  42. Graça J, Cabral V, et al. (2015) Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester. Phytochemistry 117:209–219. doi:10.1016/j.phytochem.2015.06.010

    PubMed  Article  CAS  Google Scholar 

  43. Harbers LH (1985) Ultrastructural utilization of plants by herbivores. Food Microstruct 4:357–364

    Google Scholar 

  44. Hastert AA, Owensby CE, Harbers LH (1983) Rumen microbial degradation of indiangrass and big bluestem leaf blades. J Anim Sci 57:1626–1636

    Google Scholar 

  45. Heredia-Guerrero JA, Benítez JJ, Domínguez E, Bayer IS, Cingolani R, Athanassiou A, Heredia A (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Frontiers in Plant Science 5:305. doi:10.3389/fpls.2014.00305

    PubMed  PubMed Central  Article  Google Scholar 

  46. Hess M, Sczyrba A, et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. doi:10.1126/science.1200387

    CAS  PubMed  Article  Google Scholar 

  47. Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183. doi:10.1021/jf034320o

    CAS  PubMed  Article  Google Scholar 

  48. Jung HG, Casler MD (2006) Maize Stem Tissues: Impact of Development on Cell Wall Degradability. Crop Sci 46:1793–1800. doi:10.2135/cropsci2005.02-0085

  49. Jung H-JG, Samac DA, Sarath G (2012) Modifying crops to increase cell wall digestibility. Plant Sci 185–186:65–77. doi:10.1016/j.plantsci.2011.10.014

    PubMed  Article  CAS  Google Scholar 

  50. Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716. doi:10.1111/pbi.12061

    CAS  PubMed  Article  Google Scholar 

  51. Kelly WJ, Leahy SC, et al. (2010) The Glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment. PLoS One 5:e11942. doi:10.1371/journal.pone.0011942

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Kim J, Jung JH, et al. (2013) Arabidopsis 3-ketoacyl-coenzyme a Synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, Suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580. doi:10.1104/pp.112.210450

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000. doi:10.1126/science.208.4447.990

    CAS  PubMed  Article  Google Scholar 

  54. Kosma DK, Murmu J, Razeq FM, Santos P, Bourgault R, Molina I, Rowland O (2014) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. The Plant Journal 80:216–229. doi:10.1111/tpj.12624

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Kosma DK, Rice A, Pollard M (2015) Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species. Phytochemistry 117:351–362. doi:10.1016/j.phytochem.2015.06.011

    CAS  PubMed  Article  Google Scholar 

  56. Lan W, Lu F, et al. (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol 167:1284–1295. doi:10.1104/pp.114.253757

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Landgraf R, Smolka U, et al. (2014) The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. The Plant Cell Online 26:3403–3415. doi:10.1105/tpc.114.124776

    CAS  Article  Google Scholar 

  58. Lee S-B, Jung S-J, et al. (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. The Plant Journal 60:462–475. doi:10.1111/j.1365-313X.2009.03973.x

    CAS  PubMed  Article  Google Scholar 

  59. Legay S, Guerriero G, Deleruelle A, Lateur M, Evers D, André C, Hausman J-F (2015) Apple russeting as seen through the RNA-seq lens: strong alterations in the exocarp cell wall. Plant Mol Biol 88:21–40. doi:10.1007/s11103-015-0303-4

    CAS  PubMed  Article  Google Scholar 

  60. Li Y, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci 104:18339–18344. doi:10.1073/pnas.0706984104

  61. Magalhães ALR, JMdS C, SdC VF, RdA T, Mendes Neto J, AJd A (2004) Cana-de-açúcar em substituição à silagem de milho em dietas para vacas em lactação: desempenho e viabilidade econômica. Rev Bras Zootec 33:1292–1302

    Article  Google Scholar 

  62. Mariz LDS, Valadares Filho SC, et al. (2013) Intake and ruminal digestion determined using omasal and reticular digesta samples in cattle fed diets containing sugar cane in natura or ensiled sugar cane compared with maize silage. Livest Sci 155:71–76. doi:10.1016/j.livsci.2013.04.003

    Article  Google Scholar 

  63. Mattiello L, Riaño-Pachón DM, et al. (2015) Physiological and transcriptional analyses of developmental stages along sugarcane leaf. BMC Plant Biology 15:300. doi:10.1186/s12870-015-0694-z

    PubMed  PubMed Central  Article  Google Scholar 

  64. Mazurek S, Mucciolo A, Humbel BM, Nawrath C (2013) Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals. The Plant Journal 74:880–891. doi:10.1111/tpj.12164

    CAS  PubMed  Article  Google Scholar 

  65. Mendonça SS, JMdS C, al e (2004) Consumo, digestibilidade aparente, produção e composição do leite e variáveis ruminais em vacas leiteiras alimentadas com dietas à base de cana-de-açúcar. Rev Bras Zootec 33:481–492

    Article  Google Scholar 

  66. Menezes GCC, Valadares FSC, et al. (2011) Total and partial digestibility, rates of digestion obtained with rumen evacuation and microbial protein synthesis in bovines fed fresh or ensiled sugar cane and corn silage. Rev Bras Zootec 40:1104–1113

    Article  Google Scholar 

  67. Mertz RA, Brutnell TP (2014) Bundle sheath suberization in grass leaves: multiple barriers to characterization. J Exp Bot. doi:10.1093/jxb/eru108

    PubMed  Google Scholar 

  68. Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M (2009) Identification of an Arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis. Plant Physiol 151:1317–1328. doi:10.1104/pp.109.144907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Moore PH (1995) Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Funct Plant Biol 22:661–679

    CAS  Google Scholar 

  70. Moura JCMS, Bonine CAV, De Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52:360–376. doi:10.1111/j.1744-7909.2010.00892.x

    CAS  PubMed  Article  Google Scholar 

  71. Paciullo DSC (2002) Características anatômicas relacionadas ao valor nutritivo de gramíneas forrageiras. Ciência Rural 32:357–364

    Article  Google Scholar 

  72. Paciullo DSC, Gomide JA, Queiroz DS, EAMd S (2001) Composição química e digestibilidade in vitro de lâminas foliares e colmos de gramíneas forrageiras, em função do nível de inserção no perfilho, da idade e da estação de crescimento. Rev Bras Zootec 30:964–974

    Article  Google Scholar 

  73. Pastina MM, Malosetti M, et al. (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik 124:835–849. doi:10.1007/s00122-011-1748-8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Paterson AH, Moore PH, Tew TL (2013) The gene pool of Saccharum species and their improvment. In: AH Paterson (ed) Genomics of the Saccharinae, Plant Genetics and Genomics: Crops and Models, vol 11. Springer, Berlin, pp 43–71. doi:10.1007/978-1-4419-5947-8_3

  75. Peixoto-Junior RF, Creste S, et al. (2014) Genetic diversity among Puccinia melanocephala isolates from Brazil assessed using simple sequence repeat markers. Genet Mol Res 13:7852–7863

    CAS  PubMed  Article  Google Scholar 

  76. Philippe G, Gaillard C, et al. (2016) Ester cross-link profiling of the cutin polymer of wild-type and cutin synthase tomato mutants highlights different mechanisms of polymerization. Plant Physiol 170:807–820. doi:10.1104/pp.15.01620

    PubMed  Article  Google Scholar 

  77. Piperidis G, Piperidis N, D’Hont A (2010) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Gen Genomics 284:65–73

    CAS  Article  Google Scholar 

  78. Pollard M, Beisson F, Li Y, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246. doi:10.1016/j.tplants.2008.03.003

    CAS  PubMed  Article  Google Scholar 

  79. Queiroz OCM, Nussio LG, Schmidt P, Ribeiro JL, Santos MC, Zopollatto M (2008) Silagem de cana-de-açúcar comparada a fontes tradicionais de volumosos suplementares no desempenho de vacas de alta produção. Rev Bras Zootec 37:358–365

    Article  Google Scholar 

  80. Rae A, Perroux J, Grof CL (2005) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825. doi:10.1007/s00425-004-1399-y

    CAS  PubMed  Article  Google Scholar 

  81. Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974. doi:10.1093/jxb/erq389

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Ranathunge K, Schreiber L, Franke R (2011) Suberin research in the genomics era—new interest for an old polymer. Plant Sci 180:399–413. doi:10.1016/j.plantsci.2010.11.003

    CAS  PubMed  Article  Google Scholar 

  83. Santos Brito M, Nobile P, et al. (2015) Expression profile of sugarcane transcription factor genes involved in lignin biosynthesis. Tropical Plant Biol 8:19–30. doi:10.1007/s12042-015-9147-y

    CAS  Article  Google Scholar 

  84. Santos FRC, Pinto LR, et al. (2014) Marker-trait association and epistasis for brown rust resistance in sugarcane. Euphytica 203:533–547. doi:10.1007/s10681-014-1257-3

    Article  CAS  Google Scholar 

  85. Schreiber L, Franke R, Hartmann K-D, Ranathunge K, Steudle E (2005) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. Cv. IR64) and corn (Zea mays L. Cv. Helix). J Exp Bot 56:1427–1436. doi:10.1093/jxb/eri144

    CAS  PubMed  Article  Google Scholar 

  86. Serra O, Soler M, et al. (2009) CYP86A33-targeted Gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the Periderm’s Water barrier function. Plant Physiol 149:1050–1060. doi:10.1104/pp.108.127183

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. The Plant Journal 62:277–290. doi:10.1111/j.1365-313X.2010.04144.x

    CAS  PubMed  Article  Google Scholar 

  88. Shiono K, Ando M, et al. (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). The Plant Journal 80:40–51. doi:10.1111/tpj.12614

    CAS  PubMed  Article  Google Scholar 

  89. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities and applications. International Materials Reviews 50:345–365. doi:10.1179/174328005X41168

    CAS  Article  Google Scholar 

  90. Siqueira GR, Roth MTP, Moretti MH, Benatti JMB, FDd R (2012) Uso da cana-de-açúcar na alimentação de ruminantes. Revista Brasileira de Saúde e Produção Animal 13:991–1008

    CAS  Article  Google Scholar 

  91. Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and Cork differentiation. Plant Physiol 144:419–431. doi:10.1104/pp.106.094227

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Tammisola J (2010) Towards much more efficient biofuel crops - can sugarcane pave the way? GM Crops 1:181–198. doi:10.4161/gmcr.1.4.13173

    PubMed  Article  Google Scholar 

  93. Torres RA, Costa JL (2001) Uso da cana-de-açúcar como forrageira. In: Madalena FE, Matos LL, Holanda Jr EV (eds) Produção de leite e sociedade: uma análise crítica da cadeia do leite no Brasil. FEPMVZ, Belo Horizonte, pp. 295–311

  94. Undersander D, McCaslin M, Sheaffer C, Whalen D, Miller D, Putman D, Orloff S (2009) Low lignin alfalfa: redefining the yield/quality tradeoff. In: Proc. 2009 Western Alfalfa and Forage Conference, Reno, Nevada, December 2–4

  95. Van Acker R, Leplé J-C, et al. (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci 111:845–850. doi:10.1073/pnas.1321673111

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905. doi:10.1104/pp.110.155119

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi:10.1111/j.1469-8137.2012.04337.x

    CAS  PubMed  Article  Google Scholar 

  98. Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and SugarcaneFree access. J Integr Plant Biol 53:105–119. doi:10.1111/j.1744-7909.2010.01020.x

    PubMed  Article  Google Scholar 

  99. Verrier PJ, Bird D, et al. (2008) Plant ABC proteins – a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159. doi:10.1016/j.tplants.2008.02.001

    CAS  PubMed  Article  Google Scholar 

  100. Vishwanath SJ, Kosma DK, et al. (2013) Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed Coat barrier properties. Plant Physiol 163:1118–1132. doi:10.1104/pp.113.224410

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Vishwanath S, Delude C, Domergue F, Rowland O (2014) Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier. Plant Cell Rep:1–14. doi:10.1007/s00299-014-1727-z

  102. Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307. doi:10.1016/j.pbi.2008.03.002

    CAS  PubMed  Article  Google Scholar 

  103. Wang Y-H, Acharya A, Burrell AM, Klein RR, Klein PE, Hasenstein KH (2013) Mapping and candidate genes associated with saccharification yield in sorghum. Genome 56:659–665. doi:10.1139/gen-2013-0134

    CAS  PubMed  Article  Google Scholar 

  104. Welbaum GE, Meinzer FC, Grayson RL, Thornham KT (1992) Evidence for the consequences of a barrier to solute diffusion between the apoplast and vascular bundles in sugarcane stalk tissue. Funct Plant Biol 19:611–623

    Google Scholar 

  105. Wilkerson CG, Mansfield SD, et al. (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90–93. doi:10.1126/science.1250161

    CAS  PubMed  Article  Google Scholar 

  106. Wilson JR, Hatfield RD (1997) Structural and chemical changes of cell wall types during stem development: consequences for fibre degradation by rumen microflora. Aust J Agric Res 48:165–180

    Article  Google Scholar 

  107. Wilson JR, Hattersley PW (1983) In vitro digestion of bundle sheath cells in rumen fluid and its relation to the suberized lamella and C4 photosynthetic type in Panicum species. Grass Forage Sci 38:219–223. doi:10.1111/j.1365-2494.1983.tb01643.x

    Article  Google Scholar 

  108. Wilson JR, Mertens DR (1995) Cell Wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci 35:251–259. doi:10.2135/cropsci1995.0011183X003500010046x

    Article  Google Scholar 

  109. Yadav V, Molina I, Ranathunge K, Castillo IQ, Rothstein SJ, Reed JW (2014) ABCG transporters are required for suberin and Pollen Wall extracellular barriers in Arabidopsis. The Plant Cell Online. doi:10.1105/tpc.114.129049

    Google Scholar 

  110. Yang F, Mitra P, et al. (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335. doi:10.1111/pbi.12016

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429. doi:10.1016/j.tplants.2008.06.001

    CAS  PubMed  Article  Google Scholar 

  112. Zeng J, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61:10848–10857. doi:10.1021/jf4030486

    CAS  PubMed  Article  Google Scholar 

  113. Zhang K, Bhuiya M-W, Pazo JR, Miao Y, Kim H, Ralph J, Liu C-J (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. The Plant Cell 24:3135–3152. doi:10.1105/tpc.112.101287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

RF would like to thank the Foundation for Research of the State of São Paulo for a post-doctoral fellowship (Fapesp grant 2015/05437-3); IC would like to thank FAPESP for the Young Investigators Awards research fellowship (grant 2015/02527-1); and PM would like to thank the National Council of Scientific and Technological Development (CNPq – Brazil) for a research fellowship. Marvin was used for drawing the chemical structures shown in Fig. 1, Marvin 15.3.30 (version number), 2015, ChemAxon (http://www.chemaxon.com). The authors would like to thank the Writing Department – University General Coordinator – UNICAMP – for the language services provided.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Mazzafera.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest in this work.

Additional information

Communicated by: Paulo Arruda

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, R., Cesarino, I. & Mazzafera, P. Suberin as an Extra Barrier to Grass Digestibility: a Closer Look to Sugarcane Forage. Tropical Plant Biol. 9, 96–108 (2016). https://doi.org/10.1007/s12042-016-9166-3

Download citation

Keywords

  • Cell wall
  • Lignin
  • Recalcitrance
  • Saccharum spp.
  • Suberin