Tropical Plant Biology

, Volume 9, Issue 3, pp 136–149 | Cite as

Comparative Analysis of GC Content Variations in Plant Genomes



The GC content, one of the important compositional features of the genome, varies significantly among different genomes and different regions within a genome. Identifying the driving force that shaped the GC content and deciphering the biological meaning of variations in the GC content will help us to understand genome evolution. We analyzed and compared the GC contents of 20 selected plant species, representing the major evolutionary lineages. Our result revealed the highest GC content and GC heterogeneity in the grass genomes followed by the non-grass monocot and dicot genomes. The detailed analysis of GC content in genic regions showed higher GC content in terminal exons than in internal exons in all selected species except Volvox carteri. A strong correlation between the GC contents of exons and their neighboring introns at terminals of genes was observed in all the grasses, Musa acuminata, Spirodela polyrhiza and Nelumbo nucifera genomes. Our result suggested that the widely reported negative gradient of GC3 along the coding sequences from 5′ to 3′ was likely an artifact caused by GC content calculations on an admixture of genes with variable lengths and exon numbers. Our findings supported the role of the GC biased gene conversion in shaping the nucleotide composition landscapes in monocots. The U shape pattern of the GC content along the genes may have resulted from variable degrees of interactions among transcription, replication and DNA repair machineries. The transcription-associated recombination might play a major role in GC content evolution.


GC content Ananas comosus GC biased gene conversion Transcription associated recombination 

Supplementary material

12042_2016_9165_MOESM1_ESM.pdf (1015 kb)
Sup. Fig. 1 Variation of GC3 content from the 5′ end to the 3′ end in (a) GC poor (GC < 60 %) and (b) GC rich (GC ≥ 60) coding sequences of the 20 selected species. The GC content of grasses and dicots were averaged and represented as “Grasses_avg” and “Dicot_avg”, respectively. The error bars represent the standard deviation of GC contents among the members of grasses and dicots. (PDF 1014 kb) (PDF 1014 kb)
12042_2016_9165_MOESM2_ESM.pdf (967 kb)
(PDF 966 kb)
12042_2016_9165_MOESM3_ESM.pdf (5.2 mb)
Sup. Fig. 2–21 Box plots of GC contents of each exon in the subset of genes grouped based on the number of exons. The genes with same number of exons were grouped in one group and box plot was drawn for each subset individually. The first plot for each species was drawn on the admixture of all the genes within the species. Within each set genes were further divided into GC rich (red) and GC poor (blue). Red boxes are missing in some plots because the GC rich genes with that exon number are not found. The exon index is presented on X-axis and the GC content is presented on Y-axis. Sup. Fig. 221 represent plant species in following order: P. trichocarpa; A. thaliana; C. papaya; V. vinifera; N. nucifera; S. polyrhiza; P. equestris; P. dactylifera; M. acuminata; A. comosus; S. bicolor; Z. mays; S. italica; O. sativa; B. distachyon; A. trichopoda; P. abies; S. moellendorffii; P. patens; V. carteri. (PDF 5278 kb)
12042_2016_9165_MOESM4_ESM.pdf (4.9 mb)
(PDF 5053 kb)
12042_2016_9165_MOESM5_ESM.pdf (4.9 mb)
(PDF 4983 kb)
12042_2016_9165_MOESM6_ESM.pdf (5.1 mb)
(PDF 5215 kb)
12042_2016_9165_MOESM7_ESM.pdf (5.3 mb)
(PDF 5382 kb)
12042_2016_9165_MOESM8_ESM.pdf (5.2 mb)
(PDF 5357 kb)
12042_2016_9165_MOESM9_ESM.pdf (5 mb)
(PDF 5075 kb)
12042_2016_9165_MOESM10_ESM.pdf (5.2 mb)
(PDF 5328 kb)
12042_2016_9165_MOESM11_ESM.pdf (5.3 mb)
(PDF 5465 kb)
12042_2016_9165_MOESM12_ESM.pdf (5.4 mb)
(PDF 5486 kb)
12042_2016_9165_MOESM13_ESM.pdf (5.3 mb)
(PDF 5422 kb)
12042_2016_9165_MOESM14_ESM.pdf (5.5 mb)
(PDF 5602 kb)
12042_2016_9165_MOESM15_ESM.pdf (5.3 mb)
(PDF 5465 kb)
12042_2016_9165_MOESM16_ESM.pdf (5.3 mb)
(PDF 5476 kb)
12042_2016_9165_MOESM17_ESM.pdf (5.3 mb)
(PDF 5453 kb)
12042_2016_9165_MOESM18_ESM.pdf (4.9 mb)
(PDF 4975 kb)
12042_2016_9165_MOESM19_ESM.pdf (4.8 mb)
(PDF 4897 kb)
12042_2016_9165_MOESM20_ESM.pdf (5 mb)
(PDF 5169 kb)
12042_2016_9165_MOESM21_ESM.pdf (5.2 mb)
(PDF 5278 kb)
12042_2016_9165_MOESM22_ESM.pdf (5.3 mb)
(PDF 5432 kb)
12042_2016_9165_MOESM23_ESM.pdf (3.3 mb)
Sup. Fig. 22 Matrix plot of correlations of GC contents between indexed intron and exon pairs. The exon index is presented on x-axis and intron index is on y-axis. Each circle in the plot represents the correlation of GC content between the intron and the exon at the assigned index. The size of each circle in the matrix plot corresponds to the magnitude of correlation and colors represent the direction of correlation. Green (r < 0.4) and red (r ≥ 0.4) colors indicate positive correlation while yellow(r < −0.4) and purple (r ≥ −0.4) represent negative correlation. (PDF 3342 kb) (PDF 3342 kb)
12042_2016_9165_MOESM24_ESM.pdf (2.4 mb)
Sup. Fig. 23 Matrix plot of correlations of GC contents between indexed intron and exon pairs in a subset of genes with 15 exons. The exon index is presented on x-axis and intron index is on y-axis. Each circle in the plot represents the correlation of GC content between the intron and the exon at the assigned index. The size of each circle in the matrix plot corresponds to the magnitude of correlation and colors represent the direction of correlation. Green (r < 0.4) and red (r ≥ 0.4) colors indicate positive correlation while yellow(r < −0.4) and purple (r ≥ −0.4) represent negative correlation. (PDF 2436 kb) (PDF 2436 kb)
12042_2016_9165_MOESM25_ESM.pdf (5.7 mb)
Sup. Fig. 24 Scatterplots of intron GC content on y-axis and exon GC content on x-axis for all the 20 selected genomes. The genes >5000 nt were represented in shades of red and smaller genes in shades of blue. The density of the colors corresponds to the number of genes plotted in the area. Pearson’s correlation coefficients (r) between the GC contents for large and small genes can be found below each window. (PDF 5832 kb) (PDF 5832 kb)
12042_2016_9165_MOESM26_ESM.pdf (5.6 mb)
Sup. Fig. 25 Scatterplot of cumulative length of introns in a gene on y-axis and average GC content of exons in the corresponding gene on x-axis. The genes containing 10 or more introns were represented in shades of red and genes with introns less than 10 in shades of blue. The density of the colors corresponds to the number of genes plotted in the area. Pearson’s correlation coefficients (r) between the intron length and exon GC content can be found below each window. (PDF 5748 kb) (PDF 5748 kb)


  1. Aguilera A, Gaillard H (2014) Transcription and recombination: when RNA meets DNA. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a016543 PubMedPubMedCentralGoogle Scholar
  2. Al-Dous EK, George B, Al-Mahmoud ME et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–527. doi: 10.1038/nbt.1860 CrossRefPubMedGoogle Scholar
  3. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089. doi: 10.1126/science.1241089 CrossRefGoogle Scholar
  4. Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963. doi: 10.1126/science.1203810 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7CrossRefPubMedGoogle Scholar
  6. Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. doi: 10.1038/nbt.2196 CrossRefPubMedGoogle Scholar
  7. Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11. doi: 10.1007/BF02099946 CrossRefPubMedGoogle Scholar
  8. Brown TC, Jiricny J (1987) A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell 50:945–950CrossRefPubMedGoogle Scholar
  9. Cai J, Liu X, Vanneste K et al (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72. doi: 10.1038/ng.3149 CrossRefPubMedGoogle Scholar
  10. Carels N, Bernardi G (2000) Two classes of genes in plants. Genetics 154:1819–1825PubMedPubMedCentralGoogle Scholar
  11. Carels N, Hatey P, Jabbari K, Bernardi G (1998) Compositional Properties of Homologous Coding Sequences from Plants. J Mol Evol 46:45–53. doi: 10.1007/PL00006282
  12.  Castellano-Pozo M, García-Muse T, Aguilera A (2012) R-loops cause replication impairment and genome instability during meiosis. EMBO Rep 13:923–929. doi: 10.1038/embor.2012.119 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chodavarapu RK, Feng S, Bernatavichute YV et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392. doi: 10.1038/nature09147 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clément Y, Fustier M-A, Nabholz B, Glémin S (2015) The bimodal distribution of Genic GC content is Ancestral to monocot species. Genome Biol Evol 7:336–348. doi: 10.1093/gbe/evu278 CrossRefGoogle Scholar
  15. Costantino L, Koshland D (2015) The Yin and Yang of R-loop biology. Curr Opin Cell Biol 34:39–45. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  16. D’Hont A, Denoeud F, Aury J-M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217. doi: 10.1038/nature11241 CrossRefPubMedGoogle Scholar
  17. Fujimori S, Washio T, Tomita M (2005) GC-compositional strand bias around transcription start sites in plants and fungi. BMC Genomics 6:26. doi: 10.1186/1471-2164-6-26 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fullerton SM, Carvalho AB, Clark AG (2001) Local rates of recombination are positively correlated with GC content in the human genome. Mol Biol Evol 18:1139–1142CrossRefPubMedGoogle Scholar
  19. Gautier C (2000) Compositional bias in DNA. Curr Opin Genet Dev 10:656–661CrossRefPubMedGoogle Scholar
  20. Ginno PA, Lim YW, Lott PL et al (2013) GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23:1590–1600. doi: 10.1101/gr.158436.113 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Glémin S, Clément Y, David J, Ressayre A (2014) GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis. Trends Genet 30:263–270. doi: 10.1016/j.tig.2014.05.002 CrossRefPubMedGoogle Scholar
  22. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi: 10.1093/nar/gkr944 CrossRefPubMedGoogle Scholar
  23. Gottipati P, Cassel TN, Savolainen L, Helleday T (2008) Transcription-associated recombination is dependent on replication in mammalian cells. Mol Cell Biol 28:154–164. doi: 10.1128/MCB.00816-07 CrossRefPubMedGoogle Scholar
  24. Guo X, Bao J, Fan L (2007) Evidence of selectively driven codon usage in rice: implications for GC content evolution of Gramineae genes. FEBS Lett 581:1015–1021. doi: 10.1016/j.febslet.2007.01.088 CrossRefPubMedGoogle Scholar
  25. Haudry A, Cenci A, Guilhaumon C et al (2008) Mating system and recombination affect molecular evolution in four Triticeae species. Genet Res 90:97–109. doi: 10.1017/S0016672307009032 CrossRefGoogle Scholar
  26. Hellsten U, Wright KM, Jenkins J et al (2013) Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc Natl Acad Sci 110:19478–19482. doi: 10.1073/pnas.1319032110 CrossRefPubMedPubMedCentralGoogle Scholar
  27. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768. doi: 10.1038/nature08747 CrossRefGoogle Scholar
  28. Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi: 10.1038/nature06148 CrossRefPubMedGoogle Scholar
  29. Jonkers I, Lis JT (2015) Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 16:167–177. doi: 10.1038/nrm3953 CrossRefPubMedPubMedCentralGoogle Scholar
  30. King GJ (2002) Through a genome, darkly: comparative analysis of plant chromosomal DNA. Plant Mol Biol 48:5–20CrossRefPubMedGoogle Scholar
  31. King GJ, Ingrouille MJ (1987) DNA base composition heterogeneity in the grass genus Briza L. Genome 29:621–626. doi: 10.1139/g87-103 CrossRefGoogle Scholar
  32. Lassalle F, Périan S, Bataillon T et al (2015) GC-content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLoS Genet 11, e1004941. doi: 10.1371/journal.pgen.1004941 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630CrossRefPubMedGoogle Scholar
  34. McLean MA, Tirosh I (2011) Opposite GC skews at the 5′ and 3′ ends of genes in unicellular fungi. BMC Genomics 12:638. doi: 10.1186/1471-2164-12-638 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990. doi: 10.1093/molbev/msh070 CrossRefPubMedGoogle Scholar
  36. Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996. doi: 10.1038/nature06856 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ming R, VanBuren R, Liu Y et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41. doi: 10.1186/gb-2013-14-5-r41 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ming R, VanBuren R, Wai CM et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442. doi: 10.1038/ng.3435 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mugal CF, von Grünberg H-H, Peifer M (2009) Transcription-induced mutational strand bias and its effect on substitution rates in human genes. Mol Biol Evol 26:131–142. doi: 10.1093/molbev/msn245 CrossRefPubMedGoogle Scholar
  40. Muyle A, Serres-Giardi L, Ressayre A et al (2011) GC-biased gene conversion and selection affect GC content in the Oryza genus (rice). Mol Biol Evol 28:2695–2706. doi: 10.1093/molbev/msr104 CrossRefPubMedGoogle Scholar
  41. Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. doi: 10.1038/nature12211 CrossRefPubMedGoogle Scholar
  42. Ossowski S, Schneeberger K, Lucas-Lledó JI et al (2010) The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana. Science. doi: 10.1126/science.1180677 PubMedPubMedCentralGoogle Scholar
  43. Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887. doi: 10.1093/nar/gkl976 CrossRefPubMedGoogle Scholar
  44. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. doi: 10.1038/nature07723 CrossRefPubMedGoogle Scholar
  45. Polak P, Arndt PF (2008) Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res 18:1216–1223. doi: 10.1101/gr.076570.108 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Polak P, Querfurth R, Arndt PF (2010) The evolution of transcription-associated biases of mutations across vertebrates. BMC Evol Biol 10:187. doi: 10.1186/1471-2148-10-187 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226. doi: 10.1126/science.1188800 CrossRefPubMedPubMedCentralGoogle Scholar
  48. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  49. Ratnakumar A, Mousset S, Glémin S et al (2010) Detecting positive selection within genomes: the problem of biased gene conversion. Philos Trans R Soc Lond B Biol Sci 365:2571–2580. doi: 10.1098/rstb.2010.0007 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69. doi: 10.1126/science.1150646 CrossRefPubMedGoogle Scholar
  51. Ressayre A, Glémin S, Montalent P et al (2015) introns structure patterns of variation in nucleotide composition in Arabidopsis thaliana and rice protein-coding genes. Genome Biol Evol 7:2913–2928. doi: 10.1093/gbe/evv189 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rocha EPC, Danchin A (2002) Base composition bias might result from competition for metabolic resources. Trends Genet 18:291–294Google Scholar
  53. Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucleic Acids Res 16:4269–4285. doi: 10.1093/nar/16.10.4269 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. doi: 10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  55. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995. doi: 10.1038/nsmb.1659 CrossRefPubMedGoogle Scholar
  56. Serenkov GP (1962) Nucleic acids in the evolution of algae. Izv Akad Nauk SSSR Biol 1962:857–868Google Scholar
  57. Serres-Giardi L, Belkhir K, David J, Glémin S (2012) Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24:1379–1397. doi: 10.1105/tpc.111.093674 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Singh R, Ming R, Yu Q (2013) Nucleotide composition of the Nelumbo nucifera genome. Trop Plant Biol 6:85–97. doi: 10.1007/s12042-013-9123-3 CrossRefGoogle Scholar
  59. Šmarda P, Bureš P (2012) The variation of base composition in plant genomes. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ (eds) Plant genome diversity volume 1. Springer, Vienna, pp 209–235Google Scholar
  60. Šmarda P, Bureš P, Horová L et al (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci U S A 111:E4096–E4102. doi: 10.1073/pnas.1321152111 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Spencer CCA (2006) Human polymorphism around recombination hotspots. Biochem Soc Trans 34:535–536. doi: 10.1042/BST0340535 CrossRefPubMedGoogle Scholar
  62. Swarbreck D, Wilks C, Lamesch P et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014. doi: 10.1093/nar/gkm965 CrossRefPubMedGoogle Scholar
  63. Tatarinova T, Brover V, Troukhan M, Alexandrov N (2003) Skew in CG content near the transcription start site in Arabidopsis thaliana. Bioinf Oxf Engl 19(Suppl 1):i313–i314CrossRefGoogle Scholar
  64. Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA (2010) GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 11:308. doi: 10.1186/1471-2164-11-308 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630. doi: 10.1016/0092-8674(89)90584-9 CrossRefPubMedGoogle Scholar
  66. Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  67. Vinogradov AE (2003) DNA helix: the importance of being GC-rich. Nucleic Acids Res 31:1838–1844CrossRefPubMedPubMedCentralGoogle Scholar
  68. Voelkel-Meiman K, Keil RL, Roeder GS (1987) Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079. doi: 10.1016/0092-8674(87)90714-8 CrossRefPubMedGoogle Scholar
  69. Wang H, Singer GAC, Hickey DA (2004) Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 21:90–96. doi: 10.1093/molbev/msh003 CrossRefPubMedGoogle Scholar
  70. Wang W, Haberer G, Gundlach H et al (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311. doi: 10.1038/ncomms4311 PubMedPubMedCentralGoogle Scholar
  71. Weber CC, Boussau B, Romiguier J et al (2014) Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15:549. doi: 10.1186/s13059-014-0549-1 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Webster MT, Smith NGC, Hultin-Rosenberg L et al (2005) Male-driven biased gene conversion governs the evolution of base composition in human alu repeats. Mol Biol Evol 22:1468–1474. doi: 10.1093/molbev/msi136 CrossRefPubMedGoogle Scholar
  73. Webster MT, Axelsson E, Ellegren H (2006) Strong regional biases in nucleotide substitution in the chicken genome. Mol Biol Evol 23:1203–1216. doi: 10.1093/molbev/msk008 CrossRefPubMedGoogle Scholar
  74. Wong GK-S, Wang J, Tao L et al (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856. doi: 10.1101/gr.189102 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhu L, Zhang Y, Zhang W et al (2009) Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics 10:47. doi: 10.1186/1471-2164-10-47 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Texas A&M AgriLife Research Center at DallasTexas A&M University SystemDallasUSA
  2. 2.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations