Advertisement

Tropical Plant Biology

, Volume 9, Issue 1, pp 12–28 | Cite as

Evaluation of QTLs for Shoot Fly (Atherigona soccata) Resistance Component Traits of Seedling Leaf Blade Glossiness and Trichome Density on Sorghum (Sorghum bicolor) Chromosome SBI-10L

  • K. N. S. Usha Kiranmayee
  • P. B. Kavi Kishor
  • C. Tom Hash
  • Santosh P. DeshpandeEmail author
Article

Abstract

Shoot fly is a major insect pest of sorghum damaging early crop growth, establishment and productivity. Host plant resistance is an efficient approach to minimize yield losses due to shoot fly infestation. Seedling leaf blade glossiness and trichome density are morphological traits associated with shoot fly resistance. Our objective was to identify and evaluate QTLs for glossiness and trichome density using- i) 1894 F2s, ii) a sub-set of 369 F2-recombinants, and iii) their derived 369 F2:3 progenies, from a cross involving introgression lines RSG04008-6 (susceptible) × J2614-11 (resistant). The QTLs were mapped to a 37–72 centimorgan (cM) or 5–15 Mb interval on the long arm of sorghum chromosome 10 (SBI-10L) with flanking markers Xgap001 and Xtxp141. One QTL each for glossiness (QGls10) and trichome density (QTd10) were mapped in marker interval Xgap001-Xnhsbm1044 and Xisep0630-Xtxp141, confirming their loose linkage, for which phenotypic variation accounted for ranged from 2.29 to 11.37 % and LOD values ranged from 2.03 to 24.13, respectively. Average physical map positions for glossiness and trichome density QTLs on SBI-10 from earlier studies were 4 and 2 Mb, which in the present study were reduced to 2 Mb and 800 kb, respectively. Candidate genes Glossy15 (Sb10g025053) and ethylene zinc finger protein (Sb10g027550) falling in support intervals for glossiness and trichome density QTLs, respectively, are discussed. Also we identified a sub-set of recombinant population that will facilitate further fine mapping of the leaf blade glossiness and trichome density QTLs on SBI-10.

Keywords

Shoot fly F2 F2:3 Leaf blade glossiness Trichome density QTLs 

Notes

Acknowledgments

This work is a part of the Ph.D. thesis of KNSUK. Authors are grateful to Mr. C. Muralidhar for his help and support for conducting this complete study. This work was supported by ICRISAT’s Research Program on Dryland Cereals. This work was undertaken as part of the CGIAR Research Program on Dryland Cereals.

Supplementary material

12042_2015_9157_MOESM1_ESM.xlsx (184 kb)
ESM 1 (XLSX 183 kb)
12042_2015_9157_MOESM2_ESM.docx (311 kb)
ESM 2 (DOCX 311 kb)

References

  1. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when over expressed in Arabidopsis. Plant Cell 16:2463–2480CrossRefPubMedPubMedCentralGoogle Scholar
  2. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011) Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66CrossRefPubMedGoogle Scholar
  3. Aruna C, Bhagwat VR, Madhusudhana R, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630CrossRefPubMedGoogle Scholar
  4. Bhattramakki D, Dong J, Chhabra AK, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002Google Scholar
  5. Bourland FM, Hornbeck JM, McFall AB, Calhoun SD (2003) A rating system for leaf pubescence of cotton. J Cotton Sci 7:8–15Google Scholar
  6. Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198Google Scholar
  7. Coates JC (2008) Armadillo repeat proteins: versatile regulators of plant development and signalling. In: Bogre L and Beemster G. (eds) Plant growth signalling, vol 10. Springer, Berlin Heidelberg, New York, p 299–314Google Scholar
  8. Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64CrossRefPubMedGoogle Scholar
  9. De Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M (2011) Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J Exp Bot 62:2679–2689CrossRefPubMedGoogle Scholar
  10. Deshpande SP (2005) QTL analysis for shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Ph.D. dissertation, Marathwada Agricultural University, Parbhani, Maharashtra, IndiaGoogle Scholar
  11. Dhillon MK, Sharma HC, Singh R, Naresh JS (2005) Mechanisms of resistance to shoot fly, Atherigona soccata in sorghum. Euphytica 144:301–312CrossRefGoogle Scholar
  12. Dhillon MK, Sharma HC, Folkertsma RT, Chandra S (2006) Genetic divergence and molecular characterization of sorghum hybrids and their parents for reaction to Atherigona soccata (Rondani). Euphytica 149:199–210Google Scholar
  13. Eulgem T, Rushton PJ, Robartzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206CrossRefPubMedGoogle Scholar
  14. FAOSTAT (2010) http://faostat.fao.org/
  15. Foerster JM, Beissinger T, de Leon N, Kaeppler S (2015) Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). Theor Appl Genet 128:529–538CrossRefPubMedGoogle Scholar
  16. Folkertsma RT, Sajjanar GM, Reddy VS, Sharma HC, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). In: Abstracts guide, XI plant & animal genome, San Diego, CA, USA: Town & Country Hotel, 11–15 January 2003. http://www.intl-pag.org/11/abstracts/ P5d_P462_XI.html
  17. Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531–2543CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Iskamp MH, Larkin J, Schnittger A (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148:1583–1602CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jansen RC (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedPubMedCentralGoogle Scholar
  21. Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jyothi T (2010) SSR marker-assisted backcross introgression of QTL for host plant resistance to Atherigona soccata in Sorghum bicolor. PhD dissertation, Osmania University, Hyderabad, AP, IndiaGoogle Scholar
  23. Jyothi T, Fölkertsma RT, Sharma HC, Bhasker Raj AG, Anwar Y, Hash CT (2010) P-128: Marker-assisted transfer of shoot fly resistance in Sorghum bicolor. In: Abstracts of National Symposium on Genomics and Crop Improvement: Relevance and Reservations. Institute of Biotechnology, Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad 500 030, AP, India, Feb 25–27, 2010Google Scholar
  24. Kanyika BTN, Lungu D, Mweetwa AM, Kaimoyo E, Njung’e VM, Monyo ES, Siambi M, He G, Prakash CS, Zhao Y, de Villiers SM (2015) Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electron J Biotechnol 18:61–67Google Scholar
  25. Kassahun B (2006) Mapping of simple sequence repeats (SSRS) and marker-assisted introgression of quantitative trait loci (QTLs) for stay-green in sorghum [Sorghum bicolor (L). Moench]. PhD dissertation, University of Agricultural Sciences, Dharwad, AP, IndiaGoogle Scholar
  26. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175Google Scholar
  27. Kumar AA, Reddy BVS, Sharma HC, Ramaiah B (2008) Shoot fly (Atherigona soccata) resistance in improved grain sorghum hybrids. J SAT Agric Res 6:1–4Google Scholar
  28. Kumar AA, Reddy BVS, Sharma HC, Hash CT, Srinivasa Rao P, Ramaiah B, Reddy PS (2011) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2:589–600CrossRefGoogle Scholar
  29. Kunst L, Samuels AL (2003) Bio synthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80CrossRefPubMedGoogle Scholar
  30. Kunst L, Samuels AL (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727CrossRefPubMedGoogle Scholar
  31. Li L, Li D, Liu S, Ma X, Dietrich CR (2013) The maize glossy13 gene, cloned via BSR-seq and seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liang G, He H, Li Y, Ai Q, Yu D (2014) MYB82 functions in regulation of trichome development in Arabidopsis. J Exp Bot 65:3215–3223CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li-Beisson Y, Pollard M, Vincent S, Frank P, John O, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. PNAS 106:22008–22013CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191CrossRefPubMedGoogle Scholar
  35. Mace ES, Buhariwalla HK, and Crouch JH (2003) A high throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459a, 459hGoogle Scholar
  36. Maiti RK, Bidinger FR (1979) A simple approach to the identification of shoot-fly tolerance in sorghum. Indian J Plant Prot 7:135–140Google Scholar
  37. Maiti RK, Gibson PT (1983) Trichomes in segregating generations of sorghum matings. II. Association with shoot fly resistance. Crop Sci 23:76–79CrossRefGoogle Scholar
  38. Maiti RK, Prasada Rao KE, Raju PS, House LR (1984) The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crop Res 9:279–289CrossRefGoogle Scholar
  39. Mehtre S P (2006) Genetic diversity analysis, QTL mapping and marker-assisted selection for shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. PhD dissertation, Marathwada Agricultural University, Parbhani, Maharashtra, IndiaGoogle Scholar
  40. Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027CrossRefPubMedGoogle Scholar
  42. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  43. Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74:435–447CrossRefPubMedGoogle Scholar
  44. Ramu P, Kassahun B, Senthilvel S, Kumar CA, Jayashree B, Folkertsma RT, Reddy LA, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204CrossRefPubMedGoogle Scholar
  45. Ramu P, Deshpande SP, Senthivel S, Jayashree B, Billot C, Deu M, Ananda Reddy L, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26:409–418CrossRefGoogle Scholar
  46. Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16:185–200CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sajjanar GM (2002) Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata) in sorghum [Sorghum bicolor (L.) Moench.]. PhD dissertation, University of Agricultural Sciences, Dharwad, IndiaGoogle Scholar
  48. Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439CrossRefPubMedGoogle Scholar
  49. Satish K, Madhusudhana R, Padmaja PG, Seetharama N, Patil JV (2012) Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 30:1573–1591CrossRefGoogle Scholar
  50. Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88CrossRefPubMedGoogle Scholar
  51. Sharma H C, Taneja SL, Leuschner K, Nwanze KF (1992) Techniques to screen sorghum for resistance to insects: Information Bulletin No. 32. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 48ppGoogle Scholar
  52. Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin No. 63. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, pp 177Google Scholar
  53. Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. ISMN 46:36–42Google Scholar
  54. Tarumoto I (1980) Inheritance of glossiness of leaf blades in sorghum, Sorghum bicolor (L.) Moench. Jpn J Breed 30:237–240CrossRefGoogle Scholar
  55. Tarumoto I (2005) Glossiness of leaf blades in Sorghum (Sorghum bicolor L. Moench); its visual and ultrastructural studies. JARQ 39:153–160CrossRefGoogle Scholar
  56. Tarumoto I, Miyazaki M, Matsumura T (1981) Scanning electron microscopic study of the surfaces of glossy and non-glossy leaves in sorghum Sorghum bicolor (L.) Moench. Bull Natl Grass Res Inst 18:38–44Google Scholar
  57. Tiwari SB, Belachew A, Ma SF, Young M, Ade J, Shen Y, Marion CM, Holtan HE, Bailey A, Stone JK, Edwards L, Wallace AD, Canales RD, Adam L, Ratcliffe OJ, Repetti PP (2012) The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J 70:855–865CrossRefPubMedGoogle Scholar
  58. Usha Kiranmayee KNS, Sharma HC, Kavi Kishore PB, Ramu P, Sivasubramani S, Munghate RS, Sakhale S, Hash CT, Deshpande SP (2015a) Fine genetic mapping of combined shoot fly resistance (SFR) and stay green (STG) traits on sorghum chromosome SBI-10. Presented at XXIII Plant & Animal Genomes Conference, Town & Country Convention Centre, San Diego, USA, 10–14 January, 2015. (https://pag.confex.com/pag/xxiii/webprogram/Paper15858.html)
  59. Usha Kiranmayee KNS, Hash CT, Deshpande SP, Varaprasad KVGK and Kishor PBK (2015b) Biotechnological approaches to evolve sorghum drought stress tolerance and shoot fly resistance. Curr Trends Biotechnol and Pharm. 9:281-292Google Scholar
  60. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2(1)Google Scholar
  61. Vales M, Schön C, Capettini F, Chen X, Corey A, Mather DE, Mundt C, Richardson K, Sandoval-Islas J, Utz H, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270CrossRefPubMedGoogle Scholar
  62. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Plant Res Int, WageningenGoogle Scholar
  63. Wang S, Basten CJ, Zeng ZB (2010) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
  64. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedPubMedCentralGoogle Scholar
  65. Zhou Z, Sun L, Zhao Y, An L, Yan A, Meng X, Gan Y (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • K. N. S. Usha Kiranmayee
    • 1
    • 2
  • P. B. Kavi Kishor
    • 2
  • C. Tom Hash
    • 3
  • Santosh P. Deshpande
    • 1
    Email author
  1. 1.International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia
  2. 2.Osmania UniversityHyderabadIndia
  3. 3.International Crops Research Institute for the Semi-Arid TropicsNiameyNiger

Personalised recommendations