Abstract
Shoot fly is a major insect pest of sorghum damaging early crop growth, establishment and productivity. Host plant resistance is an efficient approach to minimize yield losses due to shoot fly infestation. Seedling leaf blade glossiness and trichome density are morphological traits associated with shoot fly resistance. Our objective was to identify and evaluate QTLs for glossiness and trichome density using- i) 1894 F2s, ii) a sub-set of 369 F2-recombinants, and iii) their derived 369 F2:3 progenies, from a cross involving introgression lines RSG04008-6 (susceptible) × J2614-11 (resistant). The QTLs were mapped to a 37–72 centimorgan (cM) or 5–15 Mb interval on the long arm of sorghum chromosome 10 (SBI-10L) with flanking markers Xgap001 and Xtxp141. One QTL each for glossiness (QGls10) and trichome density (QTd10) were mapped in marker interval Xgap001-Xnhsbm1044 and Xisep0630-Xtxp141, confirming their loose linkage, for which phenotypic variation accounted for ranged from 2.29 to 11.37 % and LOD values ranged from 2.03 to 24.13, respectively. Average physical map positions for glossiness and trichome density QTLs on SBI-10 from earlier studies were 4 and 2 Mb, which in the present study were reduced to 2 Mb and 800 kb, respectively. Candidate genes Glossy15 (Sb10g025053) and ethylene zinc finger protein (Sb10g027550) falling in support intervals for glossiness and trichome density QTLs, respectively, are discussed. Also we identified a sub-set of recombinant population that will facilitate further fine mapping of the leaf blade glossiness and trichome density QTLs on SBI-10.
This is a preview of subscription content, access via your institution.





References
Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when over expressed in Arabidopsis. Plant Cell 16:2463–2480
Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011) Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66
Aruna C, Bhagwat VR, Madhusudhana R, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630
Bhattramakki D, Dong J, Chhabra AK, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002
Bourland FM, Hornbeck JM, McFall AB, Calhoun SD (2003) A rating system for leaf pubescence of cotton. J Cotton Sci 7:8–15
Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198
Coates JC (2008) Armadillo repeat proteins: versatile regulators of plant development and signalling. In: Bogre L and Beemster G. (eds) Plant growth signalling, vol 10. Springer, Berlin Heidelberg, New York, p 299–314
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64
De Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M (2011) Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J Exp Bot 62:2679–2689
Deshpande SP (2005) QTL analysis for shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Ph.D. dissertation, Marathwada Agricultural University, Parbhani, Maharashtra, India
Dhillon MK, Sharma HC, Singh R, Naresh JS (2005) Mechanisms of resistance to shoot fly, Atherigona soccata in sorghum. Euphytica 144:301–312
Dhillon MK, Sharma HC, Folkertsma RT, Chandra S (2006) Genetic divergence and molecular characterization of sorghum hybrids and their parents for reaction to Atherigona soccata (Rondani). Euphytica 149:199–210
Eulgem T, Rushton PJ, Robartzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206
FAOSTAT (2010) http://faostat.fao.org/
Foerster JM, Beissinger T, de Leon N, Kaeppler S (2015) Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). Theor Appl Genet 128:529–538
Folkertsma RT, Sajjanar GM, Reddy VS, Sharma HC, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). In: Abstracts guide, XI plant & animal genome, San Diego, CA, USA: Town & Country Hotel, 11–15 January 2003. http://www.intl-pag.org/11/abstracts/ P5d_P462_XI.html
Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680
Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531–2543
Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Iskamp MH, Larkin J, Schnittger A (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148:1583–1602
Jansen RC (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455
Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375
Jyothi T (2010) SSR marker-assisted backcross introgression of QTL for host plant resistance to Atherigona soccata in Sorghum bicolor. PhD dissertation, Osmania University, Hyderabad, AP, India
Jyothi T, Fölkertsma RT, Sharma HC, Bhasker Raj AG, Anwar Y, Hash CT (2010) P-128: Marker-assisted transfer of shoot fly resistance in Sorghum bicolor. In: Abstracts of National Symposium on Genomics and Crop Improvement: Relevance and Reservations. Institute of Biotechnology, Acharya N.G. Ranga Agricultural University, Rajendranagar, Hyderabad 500 030, AP, India, Feb 25–27, 2010
Kanyika BTN, Lungu D, Mweetwa AM, Kaimoyo E, Njung’e VM, Monyo ES, Siambi M, He G, Prakash CS, Zhao Y, de Villiers SM (2015) Identification of groundnut (Arachis hypogaea) SSR markers suitable for multiple resistance traits QTL mapping in African germplasm. Electron J Biotechnol 18:61–67
Kassahun B (2006) Mapping of simple sequence repeats (SSRS) and marker-assisted introgression of quantitative trait loci (QTLs) for stay-green in sorghum [Sorghum bicolor (L). Moench]. PhD dissertation, University of Agricultural Sciences, Dharwad, AP, India
Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175
Kumar AA, Reddy BVS, Sharma HC, Ramaiah B (2008) Shoot fly (Atherigona soccata) resistance in improved grain sorghum hybrids. J SAT Agric Res 6:1–4
Kumar AA, Reddy BVS, Sharma HC, Hash CT, Srinivasa Rao P, Ramaiah B, Reddy PS (2011) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2:589–600
Kunst L, Samuels AL (2003) Bio synthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80
Kunst L, Samuels AL (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727
Li L, Li D, Liu S, Ma X, Dietrich CR (2013) The maize glossy13 gene, cloned via BSR-seq and seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333
Liang G, He H, Li Y, Ai Q, Yu D (2014) MYB82 functions in regulation of trichome development in Arabidopsis. J Exp Bot 65:3215–3223
Li-Beisson Y, Pollard M, Vincent S, Frank P, John O, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. PNAS 106:22008–22013
Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191
Mace ES, Buhariwalla HK, and Crouch JH (2003) A high throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol Biol Rep 21:459a, 459h
Maiti RK, Bidinger FR (1979) A simple approach to the identification of shoot-fly tolerance in sorghum. Indian J Plant Prot 7:135–140
Maiti RK, Gibson PT (1983) Trichomes in segregating generations of sorghum matings. II. Association with shoot fly resistance. Crop Sci 23:76–79
Maiti RK, Prasada Rao KE, Raju PS, House LR (1984) The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crop Res 9:279–289
Mehtre S P (2006) Genetic diversity analysis, QTL mapping and marker-assisted selection for shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. PhD dissertation, Marathwada Agricultural University, Parbhani, Maharashtra, India
Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355
Moose SP, Sisco PH (1996) Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10:3018–3027
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556
Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74:435–447
Ramu P, Kassahun B, Senthilvel S, Kumar CA, Jayashree B, Folkertsma RT, Reddy LA, Kuruvinashetti MS, Haussmann BIG, Hash CT (2009) Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204
Ramu P, Deshpande SP, Senthivel S, Jayashree B, Billot C, Deu M, Ananda Reddy L, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26:409–418
Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16:185–200
Sajjanar GM (2002) Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata) in sorghum [Sorghum bicolor (L.) Moench.]. PhD dissertation, University of Agricultural Sciences, Dharwad, India
Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439
Satish K, Madhusudhana R, Padmaja PG, Seetharama N, Patil JV (2012) Development, genetic mapping of candidate gene-based markers and their significant association with the shoot fly resistance quantitative trait loci in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 30:1573–1591
Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88
Sharma H C, Taneja SL, Leuschner K, Nwanze KF (1992) Techniques to screen sorghum for resistance to insects: Information Bulletin No. 32. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 48pp
Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin No. 63. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, pp 177
Sharma HC, Reddy BVS, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. ISMN 46:36–42
Tarumoto I (1980) Inheritance of glossiness of leaf blades in sorghum, Sorghum bicolor (L.) Moench. Jpn J Breed 30:237–240
Tarumoto I (2005) Glossiness of leaf blades in Sorghum (Sorghum bicolor L. Moench); its visual and ultrastructural studies. JARQ 39:153–160
Tarumoto I, Miyazaki M, Matsumura T (1981) Scanning electron microscopic study of the surfaces of glossy and non-glossy leaves in sorghum Sorghum bicolor (L.) Moench. Bull Natl Grass Res Inst 18:38–44
Tiwari SB, Belachew A, Ma SF, Young M, Ade J, Shen Y, Marion CM, Holtan HE, Bailey A, Stone JK, Edwards L, Wallace AD, Canales RD, Adam L, Ratcliffe OJ, Repetti PP (2012) The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. Plant J 70:855–865
Usha Kiranmayee KNS, Sharma HC, Kavi Kishore PB, Ramu P, Sivasubramani S, Munghate RS, Sakhale S, Hash CT, Deshpande SP (2015a) Fine genetic mapping of combined shoot fly resistance (SFR) and stay green (STG) traits on sorghum chromosome SBI-10. Presented at XXIII Plant & Animal Genomes Conference, Town & Country Convention Centre, San Diego, USA, 10–14 January, 2015. (https://pag.confex.com/pag/xxiii/webprogram/Paper15858.html)
Usha Kiranmayee KNS, Hash CT, Deshpande SP, Varaprasad KVGK and Kishor PBK (2015b) Biotechnological approaches to evolve sorghum drought stress tolerance and shoot fly resistance. Curr Trends Biotechnol and Pharm. 9:281-292
Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2(1)
Vales M, Schön C, Capettini F, Chen X, Corey A, Mather DE, Mundt C, Richardson K, Sandoval-Islas J, Utz H, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270
Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Plant Res Int, Wageningen
Wang S, Basten CJ, Zeng ZB (2010) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USA. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468
Zhou Z, Sun L, Zhao Y, An L, Yan A, Meng X, Gan Y (2013) Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol 198:699–708
Acknowledgments
This work is a part of the Ph.D. thesis of KNSUK. Authors are grateful to Mr. C. Muralidhar for his help and support for conducting this complete study. This work was supported by ICRISAT’s Research Program on Dryland Cereals. This work was undertaken as part of the CGIAR Research Program on Dryland Cereals.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Ray Ming
Rights and permissions
About this article
Cite this article
Kiranmayee, K.N.S.U., Kishor, P.B.K., Hash, C.T. et al. Evaluation of QTLs for Shoot Fly (Atherigona soccata) Resistance Component Traits of Seedling Leaf Blade Glossiness and Trichome Density on Sorghum (Sorghum bicolor) Chromosome SBI-10L. Tropical Plant Biol. 9, 12–28 (2016). https://doi.org/10.1007/s12042-015-9157-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12042-015-9157-9
Keywords
- Shoot fly
- F2
- F2:3
- Leaf blade glossiness
- Trichome density
- QTLs