Tropical Plant Biology

, Volume 7, Issue 2, pp 43–52 | Cite as

EST Sequencing of Meloidogyne javanica Infected Pineapple Root Tissues Reveals Changes in Gene Expression during Root-Knot Nematode Induced Gall Formation

  • Richard L. Moyle
  • Jose R. BotellaEmail author


An expressed sequence tag project has been performed to survey a range of expressed sequences in the vascular cylinder tissue of pineapple roots infected with the root-knot nematode Meloidogyne javanica. A total of 4,102 EST sequences were obtained, comprising of 1,298 early infection clones, 2,461 late infection clones and 343 non-infected root tip clones. Clone redundancy was 34.4 %, with the 4,102 EST sequences clustering into 2,976 contigs comprising of 286 clusters and 2,690 singletons. A comparison of the most abundant clones isolated from the early and late infection libraries revealed significant differences in the transcriptomes of the vascular cylinder at early and late infection stages. Northern analysis and quantitative real time PCR confirmed a variety of genes including a metallothinein-like protein, an alpha tubulin, a phosphoglyceratemutase, a glyceradehyde phosphate dehydrogenase, a mannose-binding lectin and four previously undiscovered sequences are differentially expressed during gall formation. Analysis of clone distribution by functional classification revealed that the late infection library contains a higher proportion of clones associated with oxidative stress responses and the detoxification of free radicals. The EST and contig sequence collection, bioinformatic data and functional classification information is available through an online pineapple database resource housed at


Ananas comosus Enolase M. javanica Nematode infection Xyloglucan endotransglycosylase 


  1. Akashi K, Nishimura N, Ishida Y, Yokota A (2004) Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon. Biochem Biophys Res Commun 323(1):72–78PubMedCrossRefGoogle Scholar
  2. Barre A, Bourne Y, Van Damme EJ, Peumans WJ, Rouge P (2001) Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Biochimie 83(7):645–651PubMedCrossRefGoogle Scholar
  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank. Nucleic Acids Res 31(1):23–27PubMedCentralPubMedCrossRefGoogle Scholar
  4. Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida Engler J, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165(1):104–113. doi: 10.1016/j.jplph.2007.05.007 PubMedCrossRefGoogle Scholar
  5. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59(6–7):748–753PubMedCrossRefGoogle Scholar
  6. Chubatsu LS, Meneghini R (1993) Metallothionein protects DNA from oxidative damage. Biochem J 291(Pt 1):193–198PubMedCentralPubMedGoogle Scholar
  7. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci U S A 81(7):1991–1995PubMedCentralPubMedCrossRefGoogle Scholar
  8. Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, Abad P (2000) Nematode parasitism genes. Annu Rev Phytopathol 38:365–396PubMedCrossRefGoogle Scholar
  9. de Almeida Engler J, Van Poucke K, Karimi M, De Groodt R, Gheysen G, Engler G (2004) Dynamic cytoskeleton rearrangements in giant cells and syncytia of nematode-infected roots. Plant J 38(1):12–26PubMedCrossRefGoogle Scholar
  10. Fei J, Liao Z, Chai Y, Pang Y, Yao J, Sun X, Tang K (2003) Molecular cloning and characterization of a novel mannose-binding lectin gene from Amorphophallus konjac. Mol Biol Rep 30(3):177–183PubMedCrossRefGoogle Scholar
  11. Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219PubMedCrossRefGoogle Scholar
  12. Hu W et al (2003) Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35(2):139–147PubMedCrossRefGoogle Scholar
  13. Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44(3):447–458. doi: 10.1111/j.1365-313X.2005.02532.x PubMedCrossRefGoogle Scholar
  14. Jones MGK, Payne HL (1978) Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina. J Nematol 10:70–84PubMedCentralPubMedGoogle Scholar
  15. Kling PG, Olsson P (2000) Involvement of differential metallothionein expression in free radical sensitivity of RTG-2 and CHSE-214 cells. Free Radic Biol Med 28(11):1628–1637PubMedCrossRefGoogle Scholar
  16. Koia JH, Moyle RL, Botella JR (2012) Microarray analysis of gene expression profiles in ripening pineapple fruits. BMC Plant Biol 12:240. doi: 10.1186/1471-2229-12-240 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L, Van Criekinge W, De Meyer T, Gheysen G (2012) Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytol 196(3):887–900. doi: 10.1111/j.1469-8137.2012.04311.x PubMedCrossRefGoogle Scholar
  18. Li J, Todd TC, Lee J, Trick HN (2011) Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotechnol J 9(9):936–944. doi: 10.1111/j.1467-7652.2011.00601.x PubMedCrossRefGoogle Scholar
  19. Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32(Web Server issue):W327–W331. doi: 10.1093/nar/gkh454 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mazarei M, Lennon KA, Puthoff DP, Rodermel SR, Baum TJ (2003) Expression of an Arabidopsis phosphoglycerate mutase homologue is localized to apical meristems, regulated by hormones, and induced by sedentary plant-parasitic nematodes. Plant Mol Biol 53(4):513–530PubMedCrossRefGoogle Scholar
  21. Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005a) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56(409):101–112PubMedGoogle Scholar
  22. Moyle RL, Crowe ML, Ripi-Koia J, Fairbairn DJ, Botella JR (2005b) PineappleDB: an online pineapple bioinformatics resource. BMC Plant Biol 5:21PubMedCentralPubMedCrossRefGoogle Scholar
  23. Neuteboom LW, Kunimitsu WY, Webb D, Christopher DA (2002) Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development. Plant Sci 163:1021–1035CrossRefGoogle Scholar
  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45Google Scholar
  25. Portillo M, Cabrera J, Lindsey K, Topping J, Andres MF, Emiliozzi M, Oliveros JC, Garcia-Casado G, Solano R, Koltai H, Resnick N, Fenoll C, Escobar C (2013) Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytol 197(4):1276–1290. doi: 10.1111/nph.12121 PubMedCrossRefGoogle Scholar
  26. Potenza C, Thomas SH, Sengupta-Gopalan C (2001) Genes induced during early response to Meloidogyne incognita in roots of resistant and susceptible alfalfa cultivars. Plant Sci 161(2):289–299PubMedCrossRefGoogle Scholar
  27. Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AM, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15(4):469–477PubMedCrossRefGoogle Scholar
  28. Rhee SY et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31(1):224–228PubMedCrossRefGoogle Scholar
  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  30. Sasser JN (1980) Root-knot nematodes: a global menace to crop production. Plant Dis 64(1):36–41. doi: 10.1094/PD-64-36 CrossRefGoogle Scholar
  31. Schaff JE, Nielsen DM, Smith CP, Scholl EH, Bird DM (2007) Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance. Plant Physiol 144(2):1079–1092. doi: 10.1104/pp. 106.090241 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Schoof H, Zaccaria P, Gundlach H, Lemcke K, Rudd S, Kolesov G, Arnold R, Mewes HW, Mayer KF (2002) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource based on the first complete plant genome. Nucleic Acids Res 30(1):91–93PubMedCentralPubMedCrossRefGoogle Scholar
  33. Schoof H, Ernst R, Nazarov V, Pfeifer L, Mewes HW, Mayer KF (2004) MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics. Nucleic Acids Res 32(Database issue):D373–D376PubMedCentralPubMedCrossRefGoogle Scholar
  34. Tirumalaraju SV, Jain M, Gallo M (2011) Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. J Plant Physiol 168(5):481–492. doi: 10.1016/j.jplph.2010.08.006 PubMedCrossRefGoogle Scholar
  35. Whitfield CW, Cziko AM, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302(5643):296–299PubMedCrossRefGoogle Scholar
  36. Yao JH, Zhao XY, Liao ZH, Lin J, Chen ZH, Chen F, Song J, Sun XF, Tang KX (2003) Cloning and molecular characterization of a novel lectin gene from Pinellia ternata. Cell Res 13(4):301–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Plant Genetic Engineering Laboratory, Department of Botany, School of Agriculture and Food ScienceUniversity of QueenslandBrisbaneAustralia

Personalised recommendations