Skip to main content
Log in

Next-Generation Sequencing-Based Transcriptional Profiling of Sacred Lotus “China Antique”

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Rhizomes are underground stems that serve various purposes including vegetative propagation, invasion of new territory, and bioactive compound synthesis and storage. An important rhizomatous plant is sacred lotus (Nelumbo nucifera), which is prized in Asia as a medicine and a food. RNA-seq and total transcriptome analysis of rhizomes and other lotus tissues was applied to identify genes involved in rhizome growth, development and metabolism. Root, petiole, rhizome internode, and leaf tissues were used for single-read RNA-seq analysis. Two whole transcriptome paired-end read libraries from rhizome apical tip and elongation zone tissues were also generated in order to survey gene expression profiles. In this analysis, 22,803 genes were expressed: 20,476 in rhizome apical meristem and elongation zone, 17,171 in rhizome internode, 16,656 in leaf, 19,457 in root, and 16,845 in petiole. Gene ontology (GO) analysis indicated that “other membrane”, “nucleotide binding”, and “other cellular processes” were highly represented in the expressed genes. A total of 231 genes displayed rhizome-specific expression including several transcription factors, protein kinases, cytochromes P450 and a sulfate transporter. GOseq analysis showed that genes in the “molecular function” GO category and several genes related to cell proliferation based on KEGG IDs were preferentially up-regulated in rhizome tissue. In addition, 1,251 possible exon-skipping events were observed in 1,149 gene models. These results provide valuable insight into gene expression profiles and regulation in sacred lotus, and the identified rhizome-specific genes provide insight into important processes involved in the biology and development of sacred lotus rhizomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali GS, Reddy AS (2008) Regulation of alternative splicing of pre-mRNAs by stresses. Curr Top Microbiol Immunol 326:257–275

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bauer Z, Gomez-Gomez L, Boller T, Felix G (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276:45669–45676

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  PubMed  CAS  Google Scholar 

  • Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R (2009) QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25:3045–3046

    Article  PubMed  CAS  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Dimmer EC et al (2012) The UniProt-GO Annotation database in 2011. Nucleic Acids Res 40:D565–D570

    Article  PubMed  CAS  Google Scholar 

  • Filipovska A, Rackham O (2012) Modular recognition of nucleic acids by PUF, TALE and PPR proteins. Mol Biosyst 8:699–708

    Article  PubMed  CAS  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Gan QA, Schones DE, Eun SH, Wei G, Cui KR, Zhao KJ, Chen X (2010) Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis. Genome Biol 11:R42

    Google Scholar 

  • Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  PubMed  CAS  Google Scholar 

  • He R, Kim MJ, Nelson W, Balbuena TS, Kim R, Kramer R, Crow JA, May GD, Thelen JJ, Soderlund CA, Gang DR (2012) Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity. Am J Bot 99:232–247

    Article  PubMed  CAS  Google Scholar 

  • Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci U S A 100:4050–4054

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Wang D, Zhao X, Zhang T, Sun H, Zhu L, Zhang F, Li L, Li Q, Tao D, Fu B, Li Z (2011) Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC Plant Biol 11:18

    Article  PubMed  CAS  Google Scholar 

  • Hunter S et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Sentoku N, Nishimura A, Hong SK, Sato Y, Matsuoka M (2002) Position dependent expression of GL2-type homeobox gene, Roc1: significance for protoderm differentiation and radial pattern formation in early rice embryogenesis. Plant J 29:497–507

    Article  PubMed  CAS  Google Scholar 

  • Iwata E, Ikeda S, Matsunaga S, Kurata M, Yoshioka Y, Criqui MC, Genschik P, Ito M (2011) GIGAS CELL1, a novel negative regulator of the anaphase-promoting complex/cyclosome, is required for proper mitotic progression and cell fate determination in Arabidopsis. Plant Cell 23:4382–4393

    Article  PubMed  CAS  Google Scholar 

  • Jang CS, Kamps TL, Tang H, Bowers JE, Lemke C, Paterson AH (2008) Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity 102:266–273

    Article  PubMed  Google Scholar 

  • Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117

    PubMed  CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Koo HJ, McDowell ET, Ma X, Greer KA, Kapteyn J, Xie Z, Descour A, Kim H, Yu Y, Kudrna D, Wing RA, Soderlund CA, Gang DR (2013) Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Plant Biol 13:27

    Article  PubMed  CAS  Google Scholar 

  • Lamberto I, Percudani R, Gatti R, Folli C, Petrucco S (2010) Conserved alternative splicing of Arabidopsis transthyretin-like determines protein localization and S-allantoin synthesis in peroxisomes. Plant Cell 22:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  PubMed  CAS  Google Scholar 

  • Liang M, Haroldsen V, Cai X, Wu Y (2006) Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ 29:746–753

    Article  PubMed  CAS  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci U S A 106:22008–22013

    Article  PubMed  CAS  Google Scholar 

  • Lopez AJ (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279–305

    Article  PubMed  CAS  Google Scholar 

  • Magrane M, Consortium U (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009

    Article  Google Scholar 

  • Maniatis T, Tasic B (2002) Alternative pre-mRNA splicing and proteome expansion in metazoans. Nat Geosci 418:236–243

    CAS  Google Scholar 

  • Ming R et al (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14:R41

    Article  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Oyer EB, Gries GA, Rogers BJ (1959) The seasonal development of Johnson Grass plants. Weeds 7:13–19

    Article  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci U S A 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    Article  PubMed  CAS  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742

    Article  PubMed  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  • Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13:R4

    Article  PubMed  CAS  Google Scholar 

  • Sathiyaraj G, Srinivasan S, Subramanium S, Kim YJ, Kwon WS, Yang DC (2010) Polygalacturonase inhibiting protein: isolation, developmental regulation and pathogen related expression in Panax ginseng C.A. Meyer. Mol Biol Rep 37:3445–3454

    Article  PubMed  CAS  Google Scholar 

  • Sauveplane V, Kandel S, Kastner PE, Ehlting J, Compagnon V, Werck-Reichhart D, Pinot F (2009) Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. FEBS J 276:719–735

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Soderlund CA, Nelson W, Willer M, Gang DR (2013) TCW: transcriptome computational workbench. PLoS ONE 8(7):e69401

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Wang GL (2011) Genome-wide identification, characterization and phylogenetic analysis of the rice LRR-kinases. PLoS One 6:e16079

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    Article  PubMed  CAS  Google Scholar 

  • Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980

    PubMed  Google Scholar 

  • van Zanten M, Snoek LB, Proveniers MC, Peeters AJ (2009) The many functions of ERECTA. Trends Plant Sci 14:214–218

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H (1999) Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    Article  PubMed  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the US National Science Foundation (Grant IOS-1044821) for financial support of this research and Dr. Ray Ming for growth of the sacred lotus plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Gang.

Additional information

Communicated by Marcelo C. Dornelas

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional file 1

Classification of the lotus genes at the second level of the generic gene ontology (GO) categories (XLSX 12 kb)

Additional file 2

Genes highly enriched or specifically expressed in rhizome apical meristem, elongation zone, and internode. (XLSX 348 kb)

Additional file 3

Genes highly enriched or specifically expressed in leaf. (XLSX 45 kb)

Additional file 4

Genes highly enriched or specifically expressed in root. (XLSX 120 kb)

Additional file 5

Genes highly enriched or specifically expressed in petiole. (XLSX 23 kb)

Additional file 6

Potential novel genes enriched in lotus rhizome. (XLSX 50 kb)

Additional file 7

Probability Weighting Function (PWF) for quantifying the bias of the length (A) and number of reads (B). (PDF 468 kb)

Additional file 8

Highly expressed genes in rhizome apical tip and elongation zone of lotus. (XLSX 1090 kb)

Additional file 9

Highly expressed genes in rhizome apical tip and elongation zone of common reed. (XLSX 2114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MJ., Nelson, W., Soderlund, C.A. et al. Next-Generation Sequencing-Based Transcriptional Profiling of Sacred Lotus “China Antique”. Tropical Plant Biol. 6, 161–179 (2013). https://doi.org/10.1007/s12042-013-9130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-013-9130-4

Keywords

Navigation