Is Cassava the Answer to African Climate Change Adaptation?

Abstract

This paper examines the impacts of climate change on cassava production in Africa, and questions whether cassava can play an important role in climate change adaptation. First, we examine the impacts that climate change will likely have on cassava itself, and on other important staple food crops for Africa including maize, millets, sorghum, banana, and beans based on projections to 2030. Results indicate that cassava is actually positively impacted in many areas of Africa, with −3.7% to +17.5% changes in climate suitability across the continent. Conversely, for other major food staples, we found that they are all projected to experience negative impacts, with the greatest impacts for beans (−16% ± 8.8), potato (−14.7 ± 8.2), banana (−2.5% ± 4.9), and sorghum (−2.66% ± 6.45). We then examined the likely challenges that cassava will face from pests and diseases through the use of ecological niche modeling for cassava mosaic disease, whitefly, brown streak disease and cassava mealybug. The findings show that the geographic distribution of these pests and diseases are projected to change, with both new areas opening up and areas where the pests and diseases are likely to leave or reduce in pressure. We finish the paper by looking at the abiotic traits of priority for crop adaptation for a 2030 world, showing that greater drought tolerance could bring some benefits in all areas of Africa, and that cold tolerance in Southern Africa will continue to be a constraint for cassava despite a warmer 2030 world, hence breeding needs to keep a focus on this trait. Importantly, heat tolerance was not found to be a major priority for crop improvement in cassava in the whole of Africa, but only in localized pockets of West Africa and the Sahel. The paper concludes that cassava is potentially highly resilient to future climatic changes and could provide Africa with options for adaptation whilst other major food staples face challenges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aggarwal PK, Mall RK (2002) Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim Chang 52:331–343. doi:10.1023/a:1013714506779

    Article  Google Scholar 

  2. Agtunong T, Redden R, Mangge-Nang M, Searle C, Fukai S (1992) Genotypic variation in response to high temperature at flowering in common bean (Phaseolus vulgaris L.). Aust J Exp Agric 32:1135–1140. doi:10.1071/EA9921135

    Article  Google Scholar 

  3. Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232. doi:10.1016/s0304-3800(02)00349-6

    Article  Google Scholar 

  4. Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Howden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crops Res 85:85–102. doi:10.1016/s0378-4290(03)00154-0

    Article  Google Scholar 

  5. Baigorria GA, Jones JW, Shin DW, Mishra A, Brien JJ (2007) Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Clim Res 34:211–222. doi:10.3354/cr00703

    Article  Google Scholar 

  6. Bakker MM, Govers G, Ewert F, Rounsevell M, Jones R (2005) Variability in regional wheat yields as a function of climate, soil and economic variables: assessing the risk of confounding. Agric Ecosyst Environ 110:195–209. doi:10.1016/j.agee.2005.04.016

    Article  Google Scholar 

  7. Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: is it different for Africa? Food Policy 33:287–298. doi:10.1016/j.foodpol.2008.01.003

    Article  Google Scholar 

  8. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244. doi:10.1126/science.1164363

    PubMed  Article  CAS  Google Scholar 

  9. Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G, Bueno JM, Blair MW (2011) Chapter 16: genetic improvement of common beans and the challenges of climate change. Wiley and Sons

  10. Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crop models. Agron J 88:704–716

    Article  Google Scholar 

  11. Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agric Syst 70:395–420. doi:10.1016/s0308-521x(01)00053-1

    Article  Google Scholar 

  12. Boote KJ, Allen LH, Prasad PVV, Baker JT, Gesch RW, Snyder AM, Pan D, Thomas JMG (2005) Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. Jpn J Meteorol 60:469–474

    Google Scholar 

  13. Boote KJ, Jones JW, Hoogenboom G, White JW (2010) The role of crop systems simulation in agriculture and environment. Int J Agric Environ Inf Syst 1:41–54. doi:10.4018/jaeis.2010101303

    Article  Google Scholar 

  14. Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581. doi:10.1126/science.1154102

    PubMed  Article  CAS  Google Scholar 

  15. Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011) Chapter 19: adaptation of cassava to changing climates. Wiley and Sons

  16. Challinor A (2009) Towards the development of adaptation options using climate and crop yield forecasting at seasonal to multi-decadal timescales. Environ Sci Policy 12:453–465. doi:10.1016/j.envsci.2008.09.008

    Article  Google Scholar 

  17. Challinor AJ, Wheeler TR (2008a) Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol 148:343–356. doi:10.1016/j.agrformet.2007.09.015

    Article  Google Scholar 

  18. Challinor AJ, Wheeler TR (2008b) Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agric For Meteorol 148:1062–1077. doi:10.1016/j.agrformet.2008.02.006

    Article  Google Scholar 

  19. Challinor AJ, Wheeler TR, Craufurd PQ, Slingo JM, Grimes DIF (2004) Design and optimisation of a large-area process-based model for annual crops. Agric For Meteorol 124:99–120. doi:10.1016/j.agrformet.2004.01.002

    Article  Google Scholar 

  20. Challinor AJ, Wheeler TR, Craufurd PQ, Ferro CAT, Stephenson DB (2007) Adaptation of crops to climate change through genotypic responses to mean and extreme temperatures. Agric Ecosyst Environ 119:190–204. doi:10.1016/j.agee.2006.07.009

    Article  Google Scholar 

  21. Challinor AJ, Osborne T, Shaffrey L, Weller H, Morse A, Wheeler T, Vidale PL (2009) Methods and resources for climate impacts research. Bull Am Meteorol Soc 90:836–848. doi:10.1175/2008BAMS2403.1

    Article  Google Scholar 

  22. Cock JH, Franklin D, Sandoval G, Juri P (1979) The ideal cassava plant for maximum yield. Crop Sci 19:271–279. doi:10.2135/cropsci1979.0011183X001900020025x

    Article  Google Scholar 

  23. Connor DJ, Cock JH, Parra GE (1981) Response of cassava to water shortage I. Growth and yield. Field Crops Res 4:181–200. doi:10.1016/0378-4290(81)90071-x

    Article  Google Scholar 

  24. Cunha Alves AA (2002) Chapter 5: cassava botany and physiology: cassava: biology, production and utilization. In: Hillocks RJ, Thresh JM, Bellotti A (eds) CAB International

  25. Douglass DH, Christy JR, Pearson BD, Singer SF (2008) A comparison of tropical temperature trends with model predictions. Int J Climatol 28:1693–1701. doi:10.1002/joc.1651

    Article  Google Scholar 

  26. Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. J Appl Ecol 43:424–432. doi:10.1111/j.1365-2664.2006.01141.x

    Article  Google Scholar 

  27. Edwards GE, Sheta E, Bd M, Dai Z, Franceschi VR, Cheng S-H, Lin C-H, Ku MSB (1990) Photosynthetic characteristics of cassava (Manihot esculenta Crantz), a C3 species with chlorenchymatous bundle sheath cells. Plant Cell Physiol 31:1199–1206

    CAS  Google Scholar 

  28. El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501. doi:10.1007/s11103-005-2270-7

    PubMed  Article  CAS  Google Scholar 

  29. El-Sharkawy M (2005) How can calibrated research-based models be improved for use as a tool in identifying genes controlling crop tolerance to environmental stresses in the era of genomics—from an experimentalist’s perspective. Photosynthetica 43:161–176. doi:10.1007/s11099-005-0030-1

    Article  Google Scholar 

  30. El-Sharkawy M, Cock J (1987) Response of cassava to water stress. Plant Soil 100:345–360. doi:10.1007/bf02370950

    Article  Google Scholar 

  31. El-Sharkawy MA, Cock JH, Held AA (1984) Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. Photosynth Res 5:243–250. doi:10.1007/bf00030025

    Article  Google Scholar 

  32. El-Sharkawy M, Cock J, Hernandez A (1985) Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynth Res 7:137–149. doi:10.1007/bf00037004

    Article  Google Scholar 

  33. El-Sharkawy MA, De Tafur SM, Cadavid LF (1992) Potential photosynthesis of cassava as affected by growth conditions. Crop Sci 32:1336–1342. doi:10.2135/cropsci1992.0011183X003200060006x

    Article  Google Scholar 

  34. FAO (2000) The Ecocrop database. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  35. FAO (2010) FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  36. Fermont AM, van Asten PJA, Tittonell P, van Wijk MT, Giller KE (2009) Closing the cassava yield gap: an analysis from smallholder farms in East Africa. Field Crops Res 112:24–36. doi:10.1016/j.fcr.2009.01.009

    Article  Google Scholar 

  37. Fischer G, van Velthuizen H, Shah M, Nachtergaele F (2001) Global Agro-ecological Assessment for Agriculture in the 21st Century. IASA, FAO, Vienna, Austria

    Google Scholar 

  38. Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20. doi:10.1016/s0167-8809(03)00125-7

    Article  CAS  Google Scholar 

  39. Garrett K, Forbes G, Pancle S, Savary S, Sparks A, Valdivia C, Cruz CV, Willocquet L (2009) Anticipating and responding to biological complexity in the effects of climate change on agriculture. IOP Conf Ser Earth Environ Sci 6:372007

    Article  Google Scholar 

  40. Gleadow RM, Evans JR, McCaffery S, Cavagnaro TR (2009) Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown in elevated CO2. Plant Biol 11:76–82. doi:10.1111/j.1438-8677.2009.00238.x

    PubMed  Article  CAS  Google Scholar 

  41. Gregory PJ, Ingram JSI, Brklacich M (2005) Climate change and food security. Philos Trans R Soc B Biol Sci 360:2139–2148. doi:10.1098/rstb.2005.1745

    Article  CAS  Google Scholar 

  42. Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. J Exp Bot 60:2827–2838. doi:10.1093/jxb/erp080

    PubMed  Article  CAS  Google Scholar 

  43. Gutíerrez AP, Mariot EJ, Cure JR, Riddle CSW, Ellis CK, Villacorta AM (1994) A model of bean (Phaseolus vulgaris L.) growth types I–III: factors affecting yield. Agric Syst 44:35–63. doi:10.1016/0308-521x(94)90014-7

    Article  Google Scholar 

  44. Herrera Campo B, Hyman G, Bellotti A (2011) Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Secur 1–17. doi:10.1007/s12571-011-0141-4

  45. Hijmans R (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279. doi:10.1007/bf02855363

    Article  Google Scholar 

  46. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19

    Google Scholar 

  47. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  48. Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168. doi:10.3354/cr017145

    Article  Google Scholar 

  49. Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9:385–403

    Article  Google Scholar 

  50. Hutchinson MF, de Hoog FR (1985) Smoothing noisy data with spline functions. Numer Math 47:99–106

    Article  Google Scholar 

  51. IPCC (2000) Special report on emission scenarios. IPCC, Geneva, Switzerland

    Google Scholar 

  52. IPCC (2007) IPCC Fourth Assessment Report: Climate Change 2007 (AR4). IPCC, Geneva, Switzerland

    Google Scholar 

  53. Jamieson PD, Berntsen J, Ewert F, Kimball BA, Olesen JE, Pinter PJ, Porter JR, Semenov MA (2000) Modelling CO2 effects on wheat with varying nitrogen supplies. Agric Ecosyst Environ 82:27–37. doi:10.1016/s0167-8809(00)00214-0

    Article  CAS  Google Scholar 

  54. Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23. doi:10.1016/j.agee.2008.01.013

    Article  Google Scholar 

  55. Jarvis A, Ramirez J, Anderson B, Leibing C, Aggarwal P (2010) Scenarios of climate change within the context of agriculture. CAB International

  56. Jarvis A, Lau C, Cook S, Wollenberg E, Hansen J, Bonilla O, Challinor A (2011) An integrated adaptation and mitigation framework for developing agricultural research: synergies and trade-offs. Exp Agric 47:185–203. doi:10.1017/S0014479711000123

    Article  Google Scholar 

  57. Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob Environ Chang 13:51–59. doi:10.1016/s0959-3780(02)00090-0

    Article  Google Scholar 

  58. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18:235–265. doi:10.1016/s1161-0301(02)00107-7

    Article  Google Scholar 

  59. Kamukondiwa W (1996) Alternative food crops to adapt to potential climatic change in southern Africa. Clim Res 06:153–155. doi:10.3354/cr0006153

    Article  Google Scholar 

  60. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. doi:10.1093/jxb/erp096

    PubMed  Article  CAS  Google Scholar 

  61. Liu J, Fritz S, van Wesenbeeck CFA, Fuchs M, You L, Obersteiner M, Yang H (2008) A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Glob Planet Chang 64:222–235. doi:10.1016/j.gloplacha.2008.09.007

    Article  Google Scholar 

  62. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610. doi:10.1126/science.1152339

    PubMed  Article  CAS  Google Scholar 

  63. Majda AJ, Gershgorin B (2010) Quantifying uncertainty in climate change science through empirical information theory. Proc Natl Acad Sci 107:14958–14963. doi:10.1073/pnas.1007009107

    PubMed  Article  CAS  Google Scholar 

  64. Matsueda M, Palmer TN (2011) Accuracy of climate change predictions using high resolution simulations as surrogates of truth. Geophys Res Lett 38:L05803. doi:10.1029/2010gl046618

    Article  Google Scholar 

  65. Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, Kyamanywa S, Kullaya A, Valkonen JPT (2011) Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J Virol Methods 171:394–400. doi:10.1016/j.jviromet.2010.09.024

    PubMed  Article  CAS  Google Scholar 

  66. Monger W, Alicai T, Ndunguru J, Kinyua Z, Potts M, Reeder R, Miano D, Adams I, Boonham N, Glover R, Smith J (2010) The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Arch Virol 155:429–433. doi:10.1007/s00705-009-0581-8

    PubMed  Article  CAS  Google Scholar 

  67. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08823_S1.html.

    Google Scholar 

  68. Mulligan M, Fisher M, Sharma B, Xu ZX, Ringler C, Mahé G, Jarvis A, Ramírez J, Clanet J-C, Ogilvie A, M-u-D A (2011) The nature and impact of climate change in the Challenge Program on Water and Food (CPWF) basins. Water Int 36:96–124. doi:10.1080/02508060.2011.543408

    Article  Google Scholar 

  69. Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115. doi:10.1073/pnas.0601798103

    PubMed  Article  CAS  Google Scholar 

  70. Neuenschwander P (2001) Biological control of the cassava mealybug in Africa: a review. Biol Control 21:214–229. doi:10.1006/bcon.2001.0937

    Article  Google Scholar 

  71. Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Niño and the 1998 La Niña Years. J Clim 13:2628–2640. doi:10.1175/1520-0442(2000)013<2628:aaorrc>2.0.co;2

    Article  Google Scholar 

  72. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A 96:5586–5591

    PubMed  Article  CAS  Google Scholar 

  73. Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10:685–701. doi:10.1111/j.1364-3703.2009.00559.x

    PubMed  Article  CAS  Google Scholar 

  74. PCMDI (2007) IPCC Model Output. Available at: http://www.pcmdi.llnl.gov/ipcc/about_ipcc.php

  75. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2849. doi:10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2

    Article  Google Scholar 

  76. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  77. Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci 106:8441–8446. doi:10.1073/pnas.0900094106

    PubMed  CAS  Google Scholar 

  78. Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob Chang Biol 8:710–721. doi:10.1046/j.1365-2486.2002.00508.x

    Article  Google Scholar 

  79. Quiggin J (2008) Uncertainty and climate change policy. Econ Anal Policy 38:203–210

    Google Scholar 

  80. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  81. Ramirez J, Bueno-Cabrera A (2009) Working with climate data and niche modeling I. Creation of bioclimatic variables. International Center for Tropical Agriculture (CIAT), Cali, Colombia

    Google Scholar 

  82. Ramirez J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method. decision and policy analysis working paper no. 1: International Center for Tropical Agriculture (CIAT), Cali, Colombia

  83. Ramirez J, Jarvis A, Van den Bergh I, Staver C, Turner D (2011) Chapter 20: changing climates: effects on growing conditions for banana and plantain (Musa spp.) and possible responses. Wiley and Sons

  84. Ramirez-Villegas J, Jarvis A, Läderach P (2011) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric For Meteorol, in press. doi:10.1016/j.agrformet.2011.09.005

  85. Richardson CW (1981) Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour Res 17:182–190. doi:10.1029/WR017i001p00182

    Article  Google Scholar 

  86. Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on West African crop yields: what does the recent literature say? Glob Environ Chang 21:1073–1083. doi:10.1016/j.gloenvcha.2011.04.007

    Article  Google Scholar 

  87. Schafleitner R, Ramirez J, Jarvis A, Evers D, Gutierrez R, Scurrah M (2011) Chapter 11: adaptation of the potato crop to changing climates. Wiley and Sons

  88. Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5:014010

    Article  Google Scholar 

  89. Schroth G, Laderach P, Dempewolf J, Philpott S, Haggar J, Eakin H, Castillejos T, Garcia Moreno J, Soto Pinto L, Hernandez R, Eitzinger A, Ramirez-Villegas J (2009) Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig Adapt Strateg Glob Chang 14:605–625. doi:citeulike-article-id:5394445

    Article  Google Scholar 

  90. Tao F, Yokozawa M, Zhang Z (2009) Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric For Meteorol 149:831–850. doi:10.1016/j.agrformet.2008.11.004

    Article  Google Scholar 

  91. Thornton PK, Jones PG, Ericksen PJ, Challinor AJ (2011) Agriculture and food systems in sub-Saharan Africa in a 4°C + world. Philos Trans R Soc A Math Phys Eng Sci 369:117–136. doi:10.1098/rsta.2010.0246

    Article  Google Scholar 

  92. Thresh JM, Otim-Nape GW, Thankappan M, Muniyappa V (1998) The mosaic diseases of cassava in Africa and India caused by whitefly-borne geminiviruses. Rev Plant Pathol 77:935–945

    Google Scholar 

  93. Trujillo HE, Arias B, Guerrero JM, Hernandez P, Bellotti A, Peña JE (2004) Survey of parasitoids of whiteflies (Homoptera: Aleyrodidae) in cassava growing regions of Colombia and Ecuador. Fla Entomol 87:268–273. doi:10.1653/0015-4040(2004)087[0268:sopowh]2.0.co;2

    Article  Google Scholar 

  94. Wilby RL, Troni J, Biot Y, Tedd L, Hewitson BC, Smith DM, Sutton RT (2009) A review of climate risk information for adaptation and development planning. Int J Climatol 29:1193–1215. doi:10.1002/joc.1839

    Article  Google Scholar 

  95. Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A (2010) Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. J Gen Virol 91:1365–1372. doi:10.1099/vir.0.014688-0

    PubMed  Article  CAS  Google Scholar 

  96. Yaninek JS, Herren HR (1988) Introduction and spread of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae), an exotic pest in Africa and the search for appropriate control methods: a review. Bull Entomol Res 78:1–13. doi:10.1017/S0007485300016023

    Article  Google Scholar 

  97. You L, Wood S, Wood-Sichra U (2009) Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agric Syst 99:126–140. doi:10.1016/j.agsy.2008.11.003

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the crop experts (i.e. breeders, physiologists) Hernan Ceballos (cassava, CIAT), Steve Beebe (bean, CIAT), Idupulapati M. Rao (bean, CIAT), Roland Schafleitner (potato, International Potato Center), David Turner (banana, University of Western Australia), Inge van den Bergh (banana, Biovesity International) and Charles Staver (banana, Bioversity International) for their contributions to the calibration of model parameters, as well as Anthony Belloti from CIAT for providing us unpublished pest and disease data used in the study (P. manihoti). This work was done with the support of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andy Jarvis.

Additional information

Andy Jarvis and Julian Ramirez-Villegas contributed equally to this paper

Communicated by: Nigel Taylor

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1
figure9

Zone typology in the African continent as used in the study, designed to match with the study of Lobell et al. (2008) (JPEG 61 kb)

High resolution image file (TIFF 99 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jarvis, A., Ramirez-Villegas, J., Herrera Campo, B.V. et al. Is Cassava the Answer to African Climate Change Adaptation?. Tropical Plant Biol. 5, 9–29 (2012). https://doi.org/10.1007/s12042-012-9096-7

Download citation

Keywords

  • Cassava
  • Climate change
  • EcoCrop
  • Africa
  • Breeding
  • Pests and diseases