Tropical Plant Biology

, Volume 5, Issue 1, pp 73–87 | Cite as

Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools

Article

Abstract

Cassava is an important energy source in the diets of millions of people in tropical and subtropical regions of the world. It is a key subsistence crop, and its industrial uses are steadily growing. In spite of its economic and social relevance, relatively little investment has been made for research on cassava. However, conventional breeding resulted in more stable production through enhanced tolerance to biotic and abiotic stresses; increased productivity, both in fresh root production and increased dry matter content; and, more recently, improvements in qualitative traits such as starch quality and increased carotenoids content. The inbreeding of cassava has been identified as a key step for more efficient genetic improvement of the crop, therefore, research is underway to develop protocol(s) for the production of doubled haploids. Marker-assisted selection has been successfully applied to cassava, but in a more modest scale compared with other crops. More support and emphasis is needed on practical applications of molecular marker technology in cassava improvement. The availability of more efficient genotyping approaches and the cassava genome sequence promise to increase the impact of biotechnology tools on cassava improvement. Efficient and reliable phenotyping of cassava remains a challenging goal to achieve in the near future.

Keywords

Phenotypic recurrent selection Heterosis Genetic variability Biotic and abiotic stresses Industrial uses 

Abbreviations

AYT

Advanced yield trial

CBSD

Cassava Brown Streak Disease

CET

clonal evaluation trial

CMD

Cassava Mosaic Disease

DMC

dry matter content

FSD

Frogskin Disease

LAC

Latin America and the Caribbean

MAS

marker-assisted selection

PPD

post-harvest physiological deterioration

PYT

preliminary yield trial

QTL

quantitative trait loci

RT

regional trial

TILLING

Targeted Induced Local Lesions in Genome

References

  1. Allem AC (2002) The origins and taxonomy of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  2. Alvarez E, Llano G (2002) Enfermedades del cultivo de la yuca y métodos de control. In: Ospina B, Ceballos H (eds) La Yuca en el Tercer Milenio. Centro Internacional de Agricultura Tropical, Cali, ColombiaGoogle Scholar
  3. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini (2009) Characterization of a Phytoplasma associated with frogskin disease in dassava. Plant Dis 93:1139–1145Google Scholar
  4. Alves AAC (2002) Cassava botany and physiology. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  5. Alves AAC, Setter TL (2000) Response of cassava to water deficit: leaf area growth and abscisic acid. Crop Sci 40:131–137Google Scholar
  6. Alzate-G AM, Vallejo-Cabrera FA, Ceballos-Lascano H, Pérez JC, Fregene M (2010) Variabilidad genética de la yuca cultivada por pequeños agricultores de la región Caribe de Colombia. Acta Agronómica 59(4):385–393Google Scholar
  7. Beeching JR, Yuanhuai H, Gómez-Vázquez R, Day RC, Cooper RM (1998) Wound and defense responses in cassava as related to post-harvest physiological deterioration. In: Romeo JT, Downum KR, Verpporte R (eds) Recent advances in phytochemistry. phytochemical signals in plant-microbe interactions, vol. 32. Plenum Press, New York-London, pp 231–248Google Scholar
  8. Bellotti AC (2002) Arthropod pests. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  9. Bellotti AC, Arias-V B, Vargas-H O, Reyes-Q JA, Guerrero JM (2002) Insectos y ácaros dañinos a la yuca y su control. In: Ospina B, Ceballos H (eds) La Yuca en el Tercer Milenio. Centro Internacional de Agricultura Tropical, Cali, ColombiaGoogle Scholar
  10. Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker assisted selection in common beans and cassava. In: Guimaraes EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection (MAS) in crops, livestock, forestry and fish: current status and the way forward. FAO, Via Caravalle, Rome, ItalyGoogle Scholar
  11. Botha-M L, Whitehead CS, Haley AH (1998) Effect of octanoic acid on ethylene-mediated flower induction in Dutch iris. Plant Growth Regul 25:47–51Google Scholar
  12. Cach NT, Perez JC, Lenis JI, Calle F, Morante N, Ceballos H (2005) Epistasis in the expression of relevant traits in cassava (Manihot esculenta Crantz) for subhumid conditions. J Hered 96:586–592PubMedGoogle Scholar
  13. Cach TN, Lenis JI, Perez JC, Morante N, Calle C, Ceballos H (2006) Inheritance of relevant traits in cassava (Manihot esculenta Crantz) for sub-humid conditions. Plant Breed 124:1–6Google Scholar
  14. Calderón-Urrea A (1988) Transformation of Manihot esculenta (cassava) using Agrobactrium tumefaciens and expression of the introduced foreign genes in transformed cell lines. MSc thesis. Vrije University. Brussels. BelgiumGoogle Scholar
  15. Calle F, Pérez JC, Gaitán W, Morante N, Ceballos H, Llano G, Alvarez E (2005) Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144(1–2):177–186Google Scholar
  16. Calvert LA, Thresh JM (2002) The viruses and virus diseases of cassava. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  17. Calvert LA, Cuervo M, Lozano I, Villareal N, Arroyave J (2008) Identification of three strains of a virus associated with cassava plants affected by frogskin disease. J Phytopath 156:647–653Google Scholar
  18. Carvalho LJCB, de Souza CRB, Cascardo JCM, Junior CB, Campos L (2004) Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Mol Biol 56:643–659PubMedGoogle Scholar
  19. Ceballos H, Iglesias CA, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–515PubMedGoogle Scholar
  20. Ceballos H, Fregene M, Lentini Z, Sánchez T, Puentes YI, Pérez JC, Rosero A, Tofiño AP (2006a) Development and identification of high-value cassava clones. Acta Horticulturae 703:63–70Google Scholar
  21. Ceballos H, Sánchez T, Chávez AL, Iglesias C, Debouck D, Mafla G, Tohme J (2006b) Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. J Food Compos Anal 19:589–593Google Scholar
  22. Ceballos H, Fregene M, Pérez JC, Morante N, Calle F (2007a) Cassava genetic improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Ames, IA. USAGoogle Scholar
  23. Ceballos H, Sánchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Pérez JC, Calle F, Mestres C (2007b) Discovery of an Amylose-free Starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55(18):7469–7476PubMedGoogle Scholar
  24. Ceballos H, Sánchez T, Denyer K, Tofiño AP, Rosero EA, Dufour D, Smith A, Morante N, Pérez JC, Fahy B (2008) Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 56(16):7215–7222PubMedGoogle Scholar
  25. Ceballos H, Okogbenin E, Pérez JC, Becerra LA, Debouck D (2010) Cassava. In: Bradshaw J (ed) Root and tuber crops. Springer Publishers, New YorkGoogle Scholar
  26. Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011a) Adaptation of cassava to changing climates. In: Yadav SS, Redden B, Hatfield JS, Lotze-Campen G, Hall A (eds) Crop adaptation to climate change. Wiley–Blackwell, Hoboken, New JerseyGoogle Scholar
  27. Ceballos H, Chavarriaga P, Lorenzen J, Tripathi L, Chan S (2011b) Fast breeding for slow crops – Doubled haploids in cassava and banana. In: Abstracts of the 2nd Annual BREAD Meeting. National Science Foundation/Bill & Melinda Gates Foundation. Seattle, USA. July 13–15, 2011Google Scholar
  28. Charles AL, Chang YH, Ko WC, Sriroth K, Huang TC (2005) Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J Agric Food Chem 53:2717–2725PubMedGoogle Scholar
  29. Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolaños EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133Google Scholar
  30. CIAT, Centro Internacional de Agricultura Tropical (2001) Project IP3, Improved Cassava for the Developing World, Annual Report 2001. Apdo Aéreo 6713, Cali, ColombiaGoogle Scholar
  31. Cock JH, Porto MCM, El-Sharkawy MA (1985) Water use efficiency of cassava. III Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci 25:265–272Google Scholar
  32. Contreras Rojas M, Pérez JC, Ceballos H, Baena D, Morante N, Calle F (2009) Introduction of inbreeding and analysis of inbreeding depression in eight S1 cassava families. Crop Sci 49:543–548Google Scholar
  33. De Carvalho RD, Guerra M (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136:159–168PubMedGoogle Scholar
  34. DeVires J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. CABI Publishing Oxon, UK and New York, USAGoogle Scholar
  35. Dixon AGO, Asiedu R, Bokanga M (1994) Breeding of cassava for low cyanogenic potential: problems, progress and perspectives. Acta Hort 375:153–161Google Scholar
  36. Dukovski D, Bemarzky R, Han S (2006) Flowering induction of Guzmania by ethylene. Scientia Hort 110:104–108Google Scholar
  37. Easwari Amma CS, Sheela MN (1993) Heterosis in cassava: nature and magnitude. p. 88–94. In: Abstracts of the Symposium on Tropical Tuber Crops: Problems, Prospects and Future Strategies. International Society for Tropical Root Crops ISRTC, Trivandrum, India. 6-9 November, 1993Google Scholar
  38. Easwari Amma CS, Sheela MN (1995) Combining ability, heterosis and gene action for three major quality traits in cassava. J Root Crops 21(1):24–29Google Scholar
  39. Easwari Amma CS, Sheela MN (1998) Genetic analysis in a diallel cross of inbred lines of cassava. Madras Agr J 85:264–268Google Scholar
  40. Easwari Amma CS, Sheela MN, Thankamma Pillai PK (1995) Combining ability analysis in cassava. J Root Crops 21(2):65–71Google Scholar
  41. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163Google Scholar
  42. Egesi CN, Ogbe FO, Akoroda M, Ilona P, Dixon A (2007) Resistance profile of improved cassava germplasm to cassava mosaic disease in Nigeria. Euphytica 155:215–224Google Scholar
  43. El-Sharkawy MA (2006) International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stress in the tropics. Photosynthetica 44:481–512Google Scholar
  44. El-Sharkawy MA, Cock JH (1984) Water use efficiency of cassava. I Effects of air humidity and water stress on stomatal conductance and gas exchange. Crop Sci 25:265–272Google Scholar
  45. El-Sharkawy MA, Mejía de Tafur S (2010) Comparative photosynthesis, growth, productivity and nutrient use efficiency among tall- and short-stemmed raid-fed cassava cultivars. Photosynthetica 48:173–188Google Scholar
  46. Fehr WR (ed) (1987) Genetic contributions to yield gains of five mayor crop plants. Crop Science Society of America, Madison, WI, USAGoogle Scholar
  47. Flavell R (2008) The cassava plants of tomorrow. In: Abstracts of the First Scientific Meeting of the Global Cassava Partnership GCP-1.Ghent, Belgium 21–25 JulyGoogle Scholar
  48. Fregene M, Puonti-Kaerlas J (2002) Cassava biotechnology. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  49. Fregene M, Angel F, Gomez R, Rodríguez F, Chavarriaga P, Roca W, Tohme J (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Gen 95:431–441Google Scholar
  50. Fregene M, Bernal A, Duque M, Dixon A, Tohme J (2000) AFLP analysis of African cassava (Manihot esculenta Crantz) germplasm resistant to the cassava mosaic disease (CMD). Theor Appl Gen 100:678–685Google Scholar
  51. Fregene M, Matsumura H, Akano A, Dixon A, Terauchi R (2004) Serial analysis of gene expression (SAGE) of host-plant resistance to the cassava mosaic disease (CMD). Plant Mol Biol 56:563–571PubMedGoogle Scholar
  52. Gonçalves Fukuda WM, de Oliveira, Silva S, Iglesias C (2002) Cassava breeding. Crop Breed Appl Biotech 2(4):617–638Google Scholar
  53. Gonçalvez Fukuda WM, Saad N (2001) Participatory research in cassava breeding with farmers in Northeastern Brazil. Document CNPMF No. 99. EMBRAPA, Cruz das Almas. Bahia, BrazilGoogle Scholar
  54. Gonçalvez Fukuda, WM, Fukuda C, Leite-Cardoso CE, Lima-Vanconcelos O, Nunes LC (2000) Implantação e evolução dos trabalhos de pesquisa participativa em melhoramento de mandioca no nordeste Brasileiro. Documento CNPMF No. 92. EMBRAPA, Cruz das Almas. Bahia, BrazilGoogle Scholar
  55. Hahn SK, Terry ER, Leuschner K, Akobundu IO, Okali C, Lal R (1979) Cassava improvement in Africa. Field Crop Res 2:193–226Google Scholar
  56. Hahn SK, Terry ER, Leuschner K (1980a) Breeding cassava for resistance to cassava mosaic disease. Euphytica 29:673–683Google Scholar
  57. Hahn SK, Howland AK, Terry ER (1980b) Correlated resistance to cassava to mosaic and bacterial blight diseases. Euphytica 29:305–311Google Scholar
  58. Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Gen 79:433–439Google Scholar
  59. Hallauer AR, Miranda Fo JB (1988) Quantitative genetics in maize breeding, Secondth edn. Iowa State University Press, USA, pp 45–114Google Scholar
  60. Heffner EL, Sorrels ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12Google Scholar
  61. Herrera-Campo V, Hyman G, Bellotti A (2011) Threats to cassava production known and potential geographic distribution of four key biotic constraints. Food Sec. doi:10.1007/s12571-011-0141-4
  62. Hershey CH (1984) Breeding cassava for adaptation to stress conditions: development of a methodology. In: Abstracts of the 6th Symposium of the International Society for Tropical Root Crops. Lima, Peru. 20-25 February, 1983Google Scholar
  63. Hilloocks RJ, Wydra K (2002) Bacterial, fungal and nematode diseases. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  64. Hirose S, Data ES, Quevedo MA (1984) Changes in respiration and ethylene production in cassava roots. In: Uritani I, Reyes ED (eds) Tropical root crops: postharvest physiology and processing. Japan Scientific Societies Press, TokyoGoogle Scholar
  65. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267Google Scholar
  66. Howeler RH (2002) Cassava mineral nutrition and fertilization. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  67. Iglesias CA, Hershey C (1994) Cassava breeding at CIAT: heritability estimates and genetic progress in the 1980’s. In: Ofori F, Hahn SK (eds) Tropical root crops in a developing economy. ISTRC/ISHS, Wageningen, NetherlandsGoogle Scholar
  68. Iglesias CA, Mayer J, Chávez AL, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94:367–373Google Scholar
  69. Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, Arias B, Bellotti AC (2005) Diallel analysis in cassava adapted to the mid-altitude valleys environment. Crop Sci 45:1058–1063Google Scholar
  70. Jennings DL (1963) Variation in pollen and ovule fertility in varieties of cassava, and the effect of interspecific crossing on fertility. Euphytica 12:69–76Google Scholar
  71. Jennings DL, Iglesias CA (2002) Breeding for crop improvement. In: Hillocks RJ, Tresh JM, Bellotti AC (eds) Cassava: biology, production and utilization. CABI Publ, Wallingford, United KingdomGoogle Scholar
  72. Kawano K (1980) Cassava. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA, CSSA, Madison, WisconsinGoogle Scholar
  73. Kawano K (2003) Thirty years of cassava breeding for productivity – biological and social factors for success. Crop Sci 43:1325–1335Google Scholar
  74. Kawano K, Cock JH (2005) Breeding cassava for underprivileged: institutional, socio-economic and biological factors for success. J Crop Improv 14:197–219Google Scholar
  75. Kawano K, Daza P, Amaya A, Ríos M, Gonçalvez MF (1978) Evaluation of cassava germplasm for productivity. Crop Sci 18:377–380Google Scholar
  76. Kawano K, Narintaraporn K, Narintaraporn P, Sarakarn S, Limsila A, Limsila J, Suparhan D, Sarawat V, Watananonta W (1998) Yield improvement in a multistage breeding program for cassava. Crop Sci 38(2):325–332Google Scholar
  77. Kawuki RS, Ferguson M, Labuschagne M, Herselman L, Kim DJ (2009) Identification, characterisation and application of single nucleotide polymorphisms for diversity assessment in cassava (Manihot esculenta Crantz). Mol Breeding 23:669–684Google Scholar
  78. Lancaster PA, Brooks JE (1983) Cassava leaves as human food. Econ Bot 37(3):331–348Google Scholar
  79. Lenis JI, Calle F, Jaramillo G, Pérez JC, Ceballos H, Cock J (2006) Leaf retention and cassava productivity. Field Crops Res 95(2–3):126–134Google Scholar
  80. Léotard G, Duputié A, Kjellberg F, Douzery EJP, Debain C, de Granville JJ, McKey D (2009) Phylogeography and the origin of cassava: new insights form the northern rim of the Amazon basin. Mol Phylogen Evolut 53:329–334Google Scholar
  81. Losada-V. T (1990) Cruzamentos dialélicos em mandioca (Manihot esculenta Crantz). (Ph.D. diss.). Piracicaba, SP, Brazil. Escola Superior de Agricultura Luiz de Queiroz. Univ. São Paulo, BrazilGoogle Scholar
  82. Magoon ML, Krishnan R, Bai KV (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34:612–626Google Scholar
  83. Mba REC, Stephenson P, Edwards K, Melzer S, Mkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M (2001) Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31Google Scholar
  84. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442PubMedGoogle Scholar
  85. McSween S, Walker T, Salegua V, Pitoro R (2006) Economic impact on food security of varietal tolerance to cassava brown streak disease in coastal Mozambique. Research Report Series No. 1E. Institute of Agricultural Research of Mozambique. Maputo, MozambiqueGoogle Scholar
  86. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497PubMedGoogle Scholar
  87. Morante N, Moreno X, Perez JC, Calle F, Lenis JI, Ortega E, Jaramillo G, Ceballos H (2005) Precision of selection in early stages of cassava genetic improvement. J Root Crops 31:81–92Google Scholar
  88. Morante N, Sánchez T, Ceballos H, Calle F, Pérez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chávez AL (2010) Tolerance to post-harvest physiological deterioration in cassava roots. Crop Sci 50:1333–1338Google Scholar
  89. Morillo-C AC, Morillo-C Y, Fregene M, Ramírez H, Chávez AL, Sánchez T, Morante N, Ceballos-L H (2011a) Diversidad genética y contenido de carotenos totales en accesiones del germoplasma de yuca (Manihot esculenta Crantz). Acta Agronómica 60(2):97–107Google Scholar
  90. Morillo-C AC, Morillo-C Y, Fregene M, Ramirez H, Chávez AL, Sánchez T, Morante N, Ceballos-L H (2011b) Diversidad genética y contenido de carotenos totales en accesiones del germoplasma de yuca (Manihot esculenta Crantz). Acta Agronómica 60(2):97–107Google Scholar
  91. Nassar NMA (1978) Conservation of the genetic resources of cassava (Manihot esculenta): determination of wild species localities with emphasis on probably origin. Econ Bot 32:311–320Google Scholar
  92. Nassar NMA, Ortiz R (2008) Cassava genetic resources: manipulation for crop improvement. Pl Breeding Rev 31:247–275Google Scholar
  93. Ngudi DD, Kuo-H Y, Lambein F (2003) Amino acid profiles and protein quality of cooked cassava leaves or ‘saka-saka’. J Sci Food Agric 83:529–534Google Scholar
  94. Nyiira ZM (1975) Advances in research on the economic significance of the green cassava mite Mononychellus tanajoa Bondar in Uganda. International exchange and testing of cassava germplasm in Africa. In: E.R. Terry and R. MacIntyre (Eds.), Proceedings of an interdisciplinary Workshop. Ibadan, Nigeria, 17-21. November 1975. IDRC-063e, Ottawa, Canada, pp 22-29Google Scholar
  95. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci (USA) 96:5586–5591Google Scholar
  96. Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88(1):131–142PubMedGoogle Scholar
  97. Pandey S, Gardner CO (1992) Recurrent selection for population, variety and hybrid improvement in tropical maize. Adv Agron 48:1–87Google Scholar
  98. Peng Z, Xiao-Guang D, Qian X, Z. Shan Shan Z, Dong A, Jia X, Qiu-Xiang M (2008) Development of cassava biotechnology and functional genomics in China. In: Abstracts of 8th Asian Cassava Research Workshop. Vientiane, LAO PDR. 20-24 October, 2008Google Scholar
  99. Pérez JC, Ceballos H, Calle F, Morante N, Gaitán W, Llano G, Alvarez E (2005a) Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77–85Google Scholar
  100. Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, Arias B, Bellotti AC (2005b) Epistasis in cassava adapted to mid-altitude valley environments. Crop Sci 45:1491–1496Google Scholar
  101. Pérez JC, Lenis JI, Calle F, Morante N, Sánchez T, Debouck D, Ceballos H (2011) Heritability of root peel thickness and its influence in extractable starch from cassava (Manihot esculenta Crantz) roots. Plant Breed 130:688–693Google Scholar
  102. Peroni FHG, Rocha TS, Franco CML (2006) Some structural and physicochemical characteristics of tuber and root starches. Food Sci Tech Int 12(6):505–513Google Scholar
  103. Posada CA, López-G A, Ceballos H (2006) Influencia de harinas de yuca y de batata sobre pigmentación, contenido de carotenoides en la yema y desempeño productivo de aves en postura. Acta Agronómica 55(3):47–54Google Scholar
  104. Rajendran PG, Ravindran CS, Nair SG, Nayar TVR (2000) True cassava seeds (TCS) for rapid spread of the crop in non-traditional areas. Central Tuber Crops Research Institute (Indian Council of Agricultural Research). Thiruvananthapuram, 695 017, Kerala, IndiaGoogle Scholar
  105. Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619PubMedGoogle Scholar
  106. Reddy BVS, Ramesh S, Ashok Kumar A, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. BioEnergy Res 1:248–258Google Scholar
  107. Reilly K, Bernal D, Cortes DF, Gomez-Vasquez R, Tohme J, Beeching JR (2007) Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64:187–203PubMedGoogle Scholar
  108. Rickard JE (1985) Physiological deterioration of cassava roots. J Sci Food Agric 36:167–176Google Scholar
  109. Rolland-Sabaté A, Sánchez T, Buléon A, Colonna P, Jaillais B, Ceballos H, Dufour D (2012) Structural characterization of cassava, maize and potato starches with low and high amylose contents. Food Hydrocolloids 27:161–174Google Scholar
  110. Rosero-Alpala EA, Cuambe C, Egesi C, Sánchez T, Morante N, Ceballos H, Fregene M, Morales-Osorio JG (2010) Introgresión de la resistencia al deterioro fisiológico poscosecha en yuca. Acta Agronómica 59(2):180–187Google Scholar
  111. Sánchez T, Chávez AL, Ceballos H, Rodriguez-Amaya DB, Nestel P, Ishitani M (2005) Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. J Sci Food Agric 86(4):634–639Google Scholar
  112. Sánchez T, Mafla G, Morante N, Ceballos H, Dufour D, Calle F, Moreno X, Pérez JC, Debouck D (2009) Screening of starch quality traits in cassava (Manihot esculenta Crantz). Starch-Starke 61:12–19Google Scholar
  113. Sánchez T, Dufour D, Moreno IX, Ceballos H (2010) Pasting and gel stability of waxy and normal starches from cassava, potato, maize, and rice under thermal, chemical and mechanical stress. J Agric Food Chem 58:5093–5099PubMedGoogle Scholar
  114. Sriroth K, Santisopasri V, Petchalanuwat C, Kurotjanawong K, Piyachomkwan K, Oates CG (1999) Cassava starch granule structure-function properties: influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydr Polym 38:161–170Google Scholar
  115. Taylor N, Chavarriaga P, Raemarkers K, Siritunga D, Zhang P (2004) Development and application of transgenic technologies in cassava. Plant Mol Biol 56:671–688PubMedGoogle Scholar
  116. Tewe O (2004) Cassava for livestock feed in Sub-Saharan Africa. The Global Cassava Development Strategy. NeBambi L. (Coordinator). Food and Agriculture Organization of the United Nations (FAO), Rome, ItalyGoogle Scholar
  117. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput Tilling. Genome Res 13:524–530PubMedGoogle Scholar
  118. Trivellini A, Ferrante A, Lucchesini M, Mensuali-Sodi A, Vernieri P, Tognoni F, Serra G (2007) Ethylene and abscisic acid interaction during hibiscus (Hibiscus rosa-sinensis L.) flower development and senescence. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds.), Advances in Plant Ethylene Research. Proc. 7th Intl. Symp.Plant Hormone Ethylene.Springer, DordrechtGoogle Scholar
  119. Uritani I, Data ES, Tanaka Y (1984) Biochemistry of postharvest deterioration of cassava and sweet potato roots. In: Uritani I, Reyes ED (eds) Tropical root crops: postharvest physiology and processing. Japan Scientific Societies Press, TokyoGoogle Scholar
  120. van Oirschot QEA, O’Brien GM, Dufour D, El-Sharkawy MA, Mesa E (2000) The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric 80:1866–1873Google Scholar
  121. Wang C, Lentini Z, Tabares E, Quintero M, Ceballos H, Dedicova B, Sautter C, Olaya C, Peng Z (2011) Microsporogenesis and pollen formation in cassava (Manihot esculenta Crantz). Biol Plant 55(3):469–478Google Scholar
  122. Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A - accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell 22:3348–3356PubMedGoogle Scholar
  123. Westwood NN (1990) Maintenance and storage: clonal germplasm. Plant Breed Rev 7:111–128Google Scholar
  124. Wright CE (1965) Field plans for a systematically designed polycross. Rec Agr Res 14:31–41Google Scholar
  125. Xu Y, Crouch JH (2008) Marker-assisted selections in plant breeding: from publications to practice. Crop Sci 48:391–407Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hernán Ceballos
    • 1
    • 3
  • Peter Kulakow
    • 2
  • Clair Hershey
    • 1
  1. 1.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia
  2. 2.International Institute of Tropical Agriculture (IITA)IbadanNigeria
  3. 3.Universidad Nacional de Colombia – Palmira CampusPalmiraColombia

Personalised recommendations